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INTRODUCTION TO THE SECOND EDITION

About a year ago I was approached by the publisher of the present
volume about a new edition of the book, Universal Algebra. This was a
good opportunity to review the book I wrote in 1964-1965, about thirteen
years ago, to find out whether I can still subscribe to the presentation of
the book or a complete revision is necessary.

It is my opinion that the definitions and results presented in this book
form a foundation of universal algebra as much today as they did a decade
ago. Some concepts became more important and some new ones appeared,
but the foundation has not changed much.

On the other hand, my point of view changed rather substantially in a
number of areas. Compare the elementary approach to the congruence
lattice characterization theorem of a decade ago with the axiomatic
approach of today (see Appendix 7).

The obstacles in the way of a complete revision appeared just as formid-
able. An initial appraisal put the number of papers written since the
bibliography of Universal Algebra was closed (around 1967) near to 1000,
making it very difficult for someone to pretend to be an expert on all the
major developments in universal algebra. At twenty-seven I thought
nothing of establishing as my goal “to give a systematic treatment of the
most important results ”’; at forty (with a thousand more papers to contend
with and in the middle of proofreading my General Lattice Theory) I was
not so sure of being able to undertake the same.

So I decided to obtain the help of a number of experts to review various
aspects of recent developments. B. Jénsson agreed to survey congruence
varieties, a fast evolving chapter of universal algebra, based on his 1974
lecture at the Vancouver meeting of the International Mathematical Union
(Appendix 3). Walter Taylor consented to have an abbreviated version of
his survey on equational theories included (Appendix 4). R. W. Quacken-
bush undertook to present primal algebras and their generalizations, a vast
field containing many important results (Appendix 5). Finally, G. H.
Wenzel agreed to survey equational compactness (Appendix 6).

In addition, Appendix 1 surveys the developments of the last decade:
in §55, the survey follows the sections of the book; §56 surveys related

structures and §57 outlines some important new topics. Appendix 2 reviews
v



vt INTRODUCTION TO THE SECOND EDITION

the problems given in the first edition. Finally, Appendix 7 contains a
proof of the independence of congruence lattices, automorphism groups,
and subalgebra lattices of infinitary algebras and the characterization of
type-2 congruence lattices by modularity; these have not previously
appeared in print.

Referencing to the new bibliography is by year of publication, e.g.,
[1975], [1975 a]; items not in print at the time of the original compilation
are listed as [a], [b], etc.

All the appendices and the new bibliography have been widely circulated.
I would like to thank all those who sent in corrections and additions,
especially H. Andréka, J. Berman, C. C. Chen, A. P. Huhn, L. Marki,
I. Németi, B. M. Schein, W. Taylor, and A. Waterman.

In the compilation of the new bibliography I was greatly assisted by
M. E. Adams. The typing and clerical work was done by L. Gushulak,
M. McTavish, and S. Padmanabhan. In the proofreading I was helped by
M. E. Adams, W. J. Blok, and P. Kéhler.



INTRODUCTION TO THE FIRST EDITION

In A. N. Whitehead’s book on Universal Algebra,} published in 1898,
the term universal algebra had very much the same meaning that it has
today.

Universal algebra started to evolve when mathematics departed from
the study of operations on real numbers only. Hamilton’s quaternions,
Boole’s symbolic logic, and so forth, brought to light operations on
objects other than real numbers and operations which are very different
from the traditional ones.

“Such algebras have an intrinsic value for separate detailed study; also
they are worthy of a comparative study, for the sake of the light thereby
thrown on the general theory of symbolic reasoning, and on algebraic
symbolism in particular. The comparative study necessarily presupposes
some previous separate study, comparison being impossible without
knowledge”’; so wrote Whitehead in 1898 and his point of view is still
shared by many.

Thus universal algebra is the study of finitary operations on a set, and
the purpose of research is to find and develop the properties which such
diverse algebras as rings, fields, Boolean algebras, lattices, and groups may
have in common.

Although Whitehead recognized the need for universal algebra, he had
no results. The first results were published by G. Birkhoff in the thirties.
Some thirty years elapsed between Whitehead’s book and Birkhoff’s first
paper, despite the fact that the goal of research was so beautifully stated
in Whitehead’s book. However, to generalize, one needs experience, and
before the thirties most of the branches of modern algebra were not
developed sufficiently to give impetus to the development of universal
algebras.

In the period from 1935 to 1950 most papers were written along the
lines suggested by Birkhoff’s papers: free algebras, the homomorphism
theorem and the isomorphism theorems, congruence lattices, and sub-
algebra lattices were discussed. Many of the results of this period can be
found in Birkhoff’s book [6].

1 According to A. N. Whitehead, the subject matter originated with W. R. Hamilton
and A. DeMorgan, and the name for it was coined by J. J. Sylvester.

viL



v INTRODUCTION TO THE FIRST EDITION

In the meantime, mathematical logic developed to the point where it
could be applied to algebra. K. Godel’s completeness theorem (Godel [1]),
A. Tarski’s definition of satisfiability, and so on, made mathematicians
realize the possibility of applications. Such applications came about
slowly. A. I. Mal’cev’s 1941 paper [2] was the first one, but it went un-
noticed because of the war. After the war, A. Tarski, L. A. Henkin, and
A. Robinson began working in this field and they started publishing their
results about 1950.

A. Tarski’s lecture at the International Congress of Mathematicians
(Cambridge, Massachusetts, 1950) may be considered as the beginning of
the new period.

The model-theoretic aspect of universal algebras was mostly developed
by Tarski himself and by C. C. Chang, L. A. Henkin, B. Jénsson, H. J.
Keisler, R. C. Lyndon, M. Morley, D. Scott, R. L. Vaught, and others, and
to a certain extent by A. I. Mal’cev.

In the late fifties E. Marczewski [2] emphasized the importance of bases
of free algebras; he called them independent sets. As a result Marczewski,
J. Myecielski, W. Narkiewicz, W. Nitka, J. Plonka, S. Swierczkowski,
K. Urbanik, and others were responsible for more than 50 papers on the
algebraic theory of free algebras.

There are a number of individuals who have not been mentioned yet
and who have made significant contributions to universal algebra. It is
hoped that the references in the text will give everyone his due credit.

Because of the way in which universal algebras developed, many ele-
mentary results have never been published but have been used without
any reference in the papers, sometimes only in the form of a ““therefore”.
It is hoped that this book will give an adequate background for the ex-
planation of the ‘“‘therefore’s”.

The purpose of this book is to give a systematic treatment of the most
important results in the field of universal algebras. We will consider
generalizations of universal algebras only to the extent that they are
necessary for the development of the theory of universal algebras them-
selves. Therefore, the particular problems of partial algebras and struc-
tures are not discussed. Infinitary algebras will be touched upon only in
the exercises. Multi-algebras are scarcely mentioned at all. This limitation
is quite natural. First of all, to keep the length of a book within reasonable
bounds, some limitations are necessary. Secondly, it so happens that most
of the results on universal algebras can be extended in each of the direc-
tions mentioned, at the expense of more involved notations. Since the
purpose of a book should be, in the author’s opinion, to present ideas and
methods, the framework of universal algebras is sufficiently wide enough
to accomplish this. However, each of these directions has problems of its
own. For instance, infinitary partial algebras contain topological spaces as
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special cases, and the nature of these investigations does not have much
to do with the topic of this book. Topological universal algebras and
partially ordered universal algebras have not been included because of
lack of material.

Category theory is excluded from this book because a superficial treat-
ment seems to present pedagogical difficulties and it would be mathe-
matically not too effective; moreover, those topics that can be treated in
depth in a categorical framework (in particular, parts of Chapters 4 and 6)
are to be discussed by S. Eilenberg in a book (universal algebra and
automata theory) and by F. W. Lawvere in a book (on elementary
theories), in lecture notes (on algebraic theories), and in an expository
article (on the category of sets). However, there are a number of exercises
originating in category theory.

Since a short description of the content is given at the beginning of each
chapter, we will include here only a brief outline of the book.

In Chapter 0 the set-theoretic notations together with some basic facts
are given, of course, without proof. The last section is on a special type of
lattices that are useful in algebraic applications. One can hardly expect
everyone to agree with the presentation of Chapter 0. Some will find it too
short, some too long. However, it is hoped that the reader without set-
theoretic knowledge will find sufficient background material there for an
understanding of the remainder of the book, and, if he wants to delve
deeper into set theory, at least he will know what to look for.

Chapters 1-3 develop the basic results. In Chapter 1, polynomials,
polynomial symbols, homomorphisms, congruence relations, and sub-
algebras are discussed and the standard results, the isomorphism theorems,
and the like are given. The same results for partial algebras are presented
in Chapter 2, but only from the point of view of applications to algebras.
To show the usefulness of partial algebras, the last two sections of Chapter
2 give the characterization theorem of congruence lattices of algebras, due
to E. T. Schmidt and the author. Constructions of new algebras from
given ones play a central role in universal algebras. Direct products,
subdirect products, direct and inverse limits, and many related construc-
tions are given in Chapter 3.

In Chapters 4 and 5 one of the most important concepts of universal
algebras, namely that of free algebras, is discussed. The constructions,
basic properties, and several applications of free algebras are given in
Chapter 4, and in Chapter 5 we consider the bases of free algebras, a
concept identical with E. Marczewski’s notion of independence.

A short introduction to model theory is given in Chapter 6. The basic
tool is J. £é6s’ concept of prime product.

In Chapter 7 these results are applied to determine the properties that
are preserved under certain algebraic constructions using generalized
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atomic formulas of H. J. Keisler; for direct products, the method of
S. Feferman and R. L. Vaught is used.

It is hoped that most experts will agree that in these chapters the author
has selected the most important topics not biased by his own research, but
this obviously does not apply to Chapter 8, which is the author’s theory of
free structures over first order axiom systems. However, this topic seems
to be as good as any to yield further applications of the methods developed
in Chapter 6 to the purely algebraic problems of free algebras.

Each chapter is followed by exercises and problems. There are more than
650 exercises and over 100 research problems in the book. Many of the
exercises are simple illustrations of new concepts, some ask for (or give)
counterexamples, and some review additional results in the field. The
problems list some open questions which the author thought interesting.

The numbering system of theorems, lemmas, corollaries, definitions,
exercises, and problems is self-explanatory. Within each section, theorems
and lemmas are numbered consecutively. A single corollary to a theorem
or lemma is not numbered; however, if more than one corollary follows a
lemma or theorem, they are numbered from one in each case. Theorem 2
refers to Theorem 2 of the section in which it occurs; Theorem 38.2 refers
to Theorem 2 of §38; Exercise 3.92 refers to Exercise 92 of Chapter 3.

The present book is intended for the mathematician who wants to use
the methods and results of universal algebra in his own field and also for
those who want to specialize in universal algebra. For applications of
universal algebra to groups, rings, Lie algebras, and so on, the reader
should consult P. M. Cohn [1] and §6 of the author’s report [14].

The first version of the Bibliography was sent out to about 50 experts.
Numerous suggestions were received, for which the author wants to thank
each contributor. In the compilation of the original bibliography, and also
of the revised form, the author was helped by Catherine M. Gratzer.

This book is based on the notes of the lectures delivered at the Penn-
sylvania State University between October 1, 1964, and November 1,
1965. Professor Leo F. Boron took notes of the lectures, and after his notes
were reviewed (many times, rewritten), he typed them up and had them
duplicated. He worked endless hours on this. The author finds it hard to
find the words which would express his gratitude for Professor Boron’s
unselfish help. These lectures notes were completely rewritten by the
author and mimeographed. Thanks are due to the Mathematics Depart-
ment of the Pennsylvania State University for providing partial funds for
this project and to Mrs. L. Moyer who did all the typing of this second
version.

The author cannot be too grateful to the large number of mathema-
ticians who took the time and trouble to read the second mimeographed
version and to send him detailed lists of suggestions and corrections,
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major and minor. The author wants to thank all of them for their help,
especially P. M. Cohn, K. H. Diener, B. J6nsson, H. F. J. Lowig, D. Monk,
M. Novotny, H. Ribeiro, B. M. Schein, J. Schmidt, and A. G. Waterman;
their generous interest was invaluable in writing the third, final version.

The author’s students, especially M. I. Gould, G. H. Wenzel, and also
R. M. Vancko and C. R. Platt, contributed many suggestions, simplifica-
tions of proofs, and corrections at all stages of the work. They also helped
in checking the Bibliography and in presenting papers in the seminar. The
task of the final revision of the manuscript, including a final check of the
Bibliography, was undertaken by C. C. Chen. E. C. Johnston, W. A.
Lampe, H. Pesotan, C. R. Platt, R. M. Vancko, and G. H. Wenzel aided
the author in the proofreading.

Thanks are also due to the Mathematics Department of McMaster
University, Hamilton, Ontario, Canada, and especially to Professors B.
Banaschewski and G. Bruns, for making it possible for the author to give
three series of lectures (December 1964, June 1965, and December 1965)
on parts of this book, and for their several suggestions.
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TABLE OF NOTATION

Following a symbol the page number of the first occurrence is given in
parentheses.

Algebra,
structure

ABCDEFTGHIRIMNOPORSIUBWEY 3

Base set lABCDEFG’HIKLMNOPQRSTUVWXYZ

Algebras, structures. (A; F) (8, 33, 224), {A; F, R) (223), {4, R) (8, 224),
A/0 (36, 82), BP™(A) (38), PB™(7) (40, 84) B*(r) (41),
P@(K) (43), €A) (51), €A) (67, 98), G(A) (68),
Cr(A), Es(A) (98), B(A) (72), L(7) (172), Fx(M), Fx(e)
(163), Fx(A) (180), Fxle, Q) (183), Fs(e) (307),
U, a)y (239).

Classes of algebras, structures. K(r) (34, 223), K(D, X) (165), K (278),
Sp(K) (159), Id(K) (170), v»(K), f(K) (191),
A(K), A(K) (327).

Algebraic constructions. A/© (36, 82), [T(;|iel) (118), A (119),
1o (Ui € I) (144, 145, 240), Ag! (144, 145, 246),
lim o7 (129, 130), lim &7 (131), &//P (135, 136),
AB] (147), I, S, H, P, P* P, P* L, L, (152),
C (158), P, (244).

Sets. e, ¢, =, <, U, N, ', —, U N o, ), P(4) (1), (a]iel),
{a1|ieI} (4) Part(d) (1), ¢, o, @, w, ( x B, [ (d,|ieI), A"
(2,4, 5), E(4) (3), |4] (13), 4/e (6), [x]e (6) o (7).

Mappings. : A — B, ap, p(a), Ap, D(p) D(f, %) (80), p, (4), A% (4),

4« (16) ez ’ e (5 9"/’ 7 € (17 M(A)> MO(A), MI(A) (17),
P, P (40, 304), p(a) (42) a, ay, a(k/b) (227).

Partially ordered sets, lattices, Boolean algebms. <, < (8), Lu.b.(H),

glb. (H) (10), v, A, V, A, 0, 1,7 (8,9, 10, 11), B(4) (9), (H], (a]
(20), [H), [a) (26), I(2), K(8) (20).
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Cardinals, ordinals. |A| (13) Ry, ¢ (13), R, (16), m < n, m-n, m + n, m*,
X (m|iel), [Tm|iel) (13), @ (15), o (14),
wn (15), wq (16), a+B, B, (o | s € 1),
lim (e | € 1) (15).

Closures. [X]e (6), [H]w (24), [H] (24, 35), [H]s (303), L () (45, 96),
L+ (A) (49), FOA) (72), [ag, - - -, @y -1] (202).

Congruence relations. ©, (42, 84), Ok, Oy (42), O(H), O(a, b) (52), ¢, w (2),
D/0 (59), ©7 (105), O (144), Ox(a) (214), 20, (215).

Logic. L(7) (225), L(r) (226), Lu(r) (239), L, n(7) (271), L(r @ ) (253),
L@(7) (249), A, v, =, —, <>, =, A, Y, 3, V (225, 226) E, <, oF
(232), A= (234), <A, a> (239), K* (255), T* (170, 255),
S(®, f) (241), F(D) (291), e(P) (301).

Properties and conditions. Uy (294), B,, C, (315), B, C (317), P (318),
IP (322), P,, P, (327), SP (35, 44), EIS (217).

Miscellaneous. ro-ry, =1 (2), 74 (3), =~ (34), o(7) (33), P™(), P™o(YA)
(38), P™(r) (40, 84) T(w) (73), g%, g, 9, ix, p (205, 206),
7a (239), f¥ (240), P,(2) (304), E(Z) (311).
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CHAPTER 0
BASIC CONCEPTS

In this chapter we will review briefly the basic concépts of set theory.
The results that can be found in any standard book on set theory or
algebra will be stated without proof. Those who are familiar with the basic
concepts of set theory should only check the notations. Ideal theory of
semilattices with complete proofs is presented in §6. This chapter, includ-
ing the exercises, gives an adequate set theoretical background for the
book.

§1. SETS AND RELATIONS

We accept the intuitive concept of a set as a collection of objects, called
elements or members of the set. (See also the remark in §4 concerning classes.)
The notation @ € 4 means that a is an element of the set 4. If a is not an
element of A, we write a ¢ A. If A and B are sets, 4 < B denotes inclusion,
that is, that A is a subset of B, or, all the elements of 4 are also in B.
Equality of the sets A and B, in symbols 4 =B, holds if and only if
A< Band B A. If A= B does not hold, we write A # B. Proper incluston
is denoted by 4 < B; by definition 4 < B means 4 < B and 4 # B.

The votid set is denoted by & ; note that @ < 4 for every set A.

The set theoretic operations U, N, — (they are called union, intersection
and difference, respectively) have their usual meaning. If a set 4 is fixed,
then for subsets B of 4 the complement B’ of B is defined by 4 — B; by
definition, BU (A—B)=A and BN (A—B)= . Note that B< 4 is
equivalent to B=B N A, which, in turn, is equivalent to A=B U 4. If
A N B= g, we say that 4 and B are desjoint.

If A is a set, then P(A) (called the power set of A) denotes the set of all
subsets of 4.

A subset of P(A4) will be called a system, or more precisely, a system over
A. A partition 7 of 4 is a system (over A) not containing &, satisfying the
following property: every a € 4 is an element of exactly one B € =. The
members of = are called blocks of the partition . We use Part(4) for the
set of all partitions of 4. Note that Part(4)# @ ; indeed, if A= @, then
Part(4)=P(A)={o}, and if 4+ @, then Part(4) contains the partition
which has one block, namely 4. If =, and =, are partitions of 4, we will

1



2 CH. 0. BASIC CONCEPTS

write m, £ m, if for every block B of =g, there exists a block C of =, with
BcC;in this case m, is a refinement of ;.

If A and B are sets, the Cartesian product A x B of 4 and B is defined
as the set of all ordered pairs (a, >, with a € 4 and b € B. In symbols,

AxB ={{a,b)|acA and be B},

where l reads ‘‘for those which satisfy”. In general, if 4,,---, 4, _; are
sets, then
AgxAyx---xA,_,

= {{ay, ay, - - -, a’n—1>|a’0 €dg,a€Ay,- 0, 1€ 4, 1}
IfAy,=---=A4,_,=A, then we set

A = Agx -+ xA,_,.
We define A° to be {z}.
* * *

For a positive integer n and for a set 4, we define an n-ary relation r on
A as a subset of A". n is called the type of r. If r is an n-ary relation on A4
and ag,---,a,_, € A, we say that a,, - - -, a,_, are r-related, in notation
r{@g, -+, @y_y), ifand only if ay, - - -, @, _ > €.

If r, and r, are n-ary relations on 4, then so are r, U ry, ro N7y and
—ro=A"—r, (read: not r,).

If r is a relation on A and A < B, then we can consider 7 as a relation
on B, since rc A"< B™.

We shall be particularly interested in binary relations. For a binary
relation r, {a, b> € r will also be denoted by one of the three equivalent
notations: (e, b), arb, and a=b(r). For binary relations we also define the
product and inverse. If r, and r, are binary relations on 4, then the
product ry-r, (or simply rqr,) is defined by the rule: for a, b € 4, a(rry)b
if and only if there exists a ¢ € 4 with aryc and cr,b. Note that in general
ror1 #717o. If 7 is a binary relation on A, then the inverse r =1 of r is defined
by the rule: ar~ b if and only if bra.

Two binary relations ¢, and w, on the set 4 are frequently used:
a=b(y,) for all a,be A; a=b(w,) if and only if a=b. ¢, is called the
complete relation on A and w, the equality relation on A. If there is no
danger of confusion, we will omit the index 4, i.e., we write . and w for
14 and w,, respectively. By definition, t=4 x 4 and w={{a, a)|a c 4}
(this set is sometimes called the diagonal of A2).

w and . are examples of an important class of binary relations, called
equivalence relations. A binary relation ® on A is defined to be an
equivalence relation if the following three conditions hold for alla, b, c € 4:

(i) a®a (O is reflexive);
(ii) a®b implies bQa (O is symmetric);
(iii) a®b and bOc imply a@c (O is transitive).
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The set of all equivalence relations on 4 will be denoted by E(4). For
&g, &, € E(A) we agree to write ey <¢; for egSe;.

We shall now state a theorem which relates partitions and equivalence
relations.

Theorem 1. 1. Let = be a partition of the set A and define a binary
relation e, on A by aeb if and only if a and b are in the same block of the
partition w. Then e, 1s an equivalence relation on A.

2. Let ¢ be an equivalence relation on A. For a € A set

A, = {b|be A and acb}.

Let 7, be the system of all B< A which are of the form A,. Then m, 1s a
partition of A.
3. If moSm, then e, <e, .If eg<e,, thenm, <=, .

4. =7, and e=¢,).

If r is an n-ary relation on 4 and B< A4, then rz=7 N B" is an n-ary
relation on B (the notation r| B for 7 is very common in the literature but
will not be used in this book). The relation ry is called the restriction of r to
B. If there is no danger of confusion, we shall omit the subscript B. For
instance, if 4 is the set of all real numbers, = is the usual ordering of real
numbers, and B is the set of all rational numbers, then we shall write <
instead of = for the usual ordering restricted to the rationals.

Note that a restriction of an equivalence relation is always an
equivalence relation.

§2. MAPPINGS AND OPERATIONS

Given two sets 4 and B and a binary relation ¢ on 4 U B, we call ¢
a mapping (or a function) of A into B if: (a, by e ponlyifa e A,b e Band,
for every a € A, there exists exactly one b € B satisfying (a, b) € ¢; this
element b is called the 1mage of the element a under the mapping ¢ and a
is called an inverse-image of b under . For a mapping ¢ we introduce the
notations ¢: @ — b and ap=> for (a, b) € ¢ (and the functional notation
@(a)=b), and we write p: A — B to indicate that ¢ is a mapping of 4 into
B. A is called the domain of ¢, in notation D(p)=A. If the inverse rela-
tion is also a mapping, we will denote it by ¢~ 1. We set

Ap = {b| b e B, and there exists an a € 4 with ap = b},

and we call A the image of A under ¢.
It is easily seen that if ¢ is a mapping of 4 into B and C< 4, then
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@ N (Cx B) is a mapping of C into B, denoted by ¢., and called the
restriction of ¢ to C.

The mapping ¢: A — B is onto if Ap= B; ¢ is 1-1 (one-to-one) if every
element of B has at most one inverse-image, that is, if agp=a,¢ (a,, a, € 4)
implies a,=a,.

It should be emphasized that a mapping ¢: A — B is by definition a
subset of (4 U B)?, thus we can form unions, intersections, and so on, of
mappings; whatever we get this way will again be binary relations on
A U B, but they will very seldom be mappings.

If A and B are sets, the set of all mappings of 4 into B will be denoted
by B“. Note that if A has n elements and B has m elements, then B4
has m" elements, and B? = {@}.

A family (a;|i€I) of elements of A is a mapping ¢ from the set I
into the set 4, where a;=1¢. This notation will be used when the emphasis
is on listing the elements of 4 (probably with repetitions) rather than on
the set 1. I is called the index set of the family (a; |4 € I). The image of
I under ¢ will be denoted by

{a;| 1€ I}.
Let us remark that every set 4 gives rise to a family, whose index set is
A with ¢ as the identity map: x — z. Thus every set can be written
as

{a|ac A4}

If (4;]|¢€1) is a family of subsets of a certain set 4, the union and

intersection of these sets are denoted by
U (4; | 1el)
and
ﬂ (4; | 1el)
respectively.

Thus if the r, i€l are n-ary relations on A4, then | (r,|i€l) and
(M (r;| i € I) are also n-ary relations on A.

As usual, if I= g, we set | J (4;|1el)=o and () (4;|ie)=A4.

Let (4;|iel) be a family of sets. The Cartesian product (or direct
product)

[T, | 1el)
is defined as the subset of (| (4;|¢ e I))’ of all functions f for which
f(@@) € A, for all ¢ € I. To relate this to the definition of 4qx --- x4,_;in
§1, let us agree that from now on we use an n-tuple <{a,,-:-, a,_,> of
elements of 4 as a notation for fe A©1:-»~1 for which a,=f(0),-- -,
a,_,;=f(n—1). In other words, n-tuples are used as notations for special
types of functions. Then we have indeed that

Aox - xA,_y =] (4]i€{0, -, n=1}).
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Let us also agree that we will write A™ for A©%-"~1 and then we see that
the definitions of §1 are special cases of the general definition of direct
product. (Note that in many developments of set theory = is defined as
{0,1,---,n—1}.)

For ¢ € 1, we can define a mapping ¢ of [T (4; | t € 1) into A; by

el f— f(3).

e/ is called a projection. In particular, the projections of A" are ey, - - -,
e _,. Since these are mappings of 4" into 4, we will consider them as
functions on n variables. Thus ¢*(ag, - - -, @, _,) =a;.

Let A be a set and » a nonnegative integer. An n-ary operation on the
set A is a mapping f of A™ into 4; n is called the type of f. Thus an n-ary
operation assigns to every n-tuple {(ag,---,a,_;> of elements of 4 a
unique element of 4, which will be denoted by f(a,, - - -, @,_,). Hence

f(a’O""7an—1) =a

means f: {ag, - - -, @, 1) — a. Since an operation is a mapping of A" into
A, we can also say that an n-ary operation is an element of 4A“4™,

We observe that a 0-ary (nullary) operation is a mapping f: {@} — 4,
which is determined by the single image element of &, f( @) e 4. Examples
of nullary operations will be given in §3. One can think of a nullary
operation as a constant unary operation, where the variable was omitted
since the operation does not depend on it. Of course, one cannot identify
the constant unary operation f with the nullary operation g which arises
from f by “omitting the variable’”’. Among other things, f and g are not of
the same type!

An n-ary operation f on A can also be described by an (n+1)-ary
relation r defined by

r(@gy+*+, @1, @) if and only if f(ay, -+, a,-;) = a.

(See Exercise 36.)
Unary and binary operations will sometimes be given by means of
Cayley tables. For instance if 4 ={a, b}, then

fla b

b a

represents the unary operation f defined by f(a)=»b, f(b)=a, and
fla b

ala b

bla a
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represents the binary operation f defined by f(a,a)=a, f(a, b)=b,
fb,a)=a, f(b,b)=a.

Let B A" Then f: B — A is called a partial operation on 4 of type n.
A vpartial operation assigns elements of 4 to certain n-tuples and is un-
defined for others. (The operation a~! for real numbers is an example
of a partial operation, since it is defined only for #0.)

Although our primary interest is in operations, we consider partial
operations because they provide an important tool for the study of
operations themselves. Partial operations can also be described by rela-
tions (see Exercise 36).

If f is an »n-ary operation on 4 and B< A", then fz: B — A is a partial
operation on A.

Binary operations (and partial operations) play an important role;
sometimes we use infix notation for them (as for binary relations), e.g.,
a+b, a-b (rather than +(a, b) and - (a, b)). For some unary operations we
use exponent notation, e.g., B’ for complement (rather than ’(B)).
Infix notations were used for the three binary operations on binary
relations.

The product operation on binary relations can be applied to define the
product of mappings. If o: A — B and ¢: B — C, then ¢y will be the con-
secutive application of ¢ and ¢ (Prove it.). Thus ¢y is a mapping of 4
into C and fora e 4

a(ef) = (aplp.

If o: A — B, ¢: B, — C, then ¢y will be a mapping of 4 into C if and only
if Ap< B,. This condition is always satisfied if ¢ and ¢ are mappings of a
set 4 into itself. The properties of this operation on 44 will be discussed
in §5.

* * *

In §1 we set up a 1-1 correspondence between E(4) and Part(A4). There
is also an interesting relationship between E(4) and the mappings of 4.

Let ¢ be an equivalence relation on 4 and let =, be the corresponding
partition (see Theorem 1.1). For H < A4 set

[Hle = {a|a € 4 and hea for some h € H};

this set is called the closure of H under e. If H ={x}, we will write [z]e for
{{z}le. By Theorem 1.1, for every x € 4, {z]e € m,; the block [z]e is called
the equivalence class containing . (In this expression, class is a synonym
for set.) Thus [H]e is the union of all blocks of 7, which contain at least one
element of H. The mapping

@t X —> [T]e

is called the natural mapping of 4 onto A/e, the set of all equivalence
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classes under e. (Of course, m, and A/e are identical.) A/e is called the
quotient set of A modulo e.

Just as an equivalence relation ¢ defines a natural mapping of 4 onto
its quotient set A/e, a mapping ¢: A — B defines a natural equivalence
relation ¢, on 4 under which two elements are related if and only if they
have the same image in B under ¢. We will call ¢, the equivalence relation
induced by . (Note that e, =pp~1.)

Theorem 1. Any mapping x: A — B can be represented as a product of
two mappings ¢ and §, x=qf, where @ is onto and s 1-1; if & is the
equivalence relation induced by x, then we can set p=¢,: A — Ale and
Y: Ale — B, defined by y: [x]e — xy (x € 4).

Remark. Theorem 1 can be visualized using Fig. 1, where A, B, A/e are
the sets of Theorem 1, and an arrow indicates a mapping; the arrows are

X
Ao »0 B

[)
A/e

Fig. 1

labeled by the symbol of the mapping. The diagram is commutative, that is,
if we can get from a set to another one by different sequences of arrows,
the product of the corresponding mappings is always the same.

Proof. First we prove that ¢ is well defined, that is, if [2]e=[y]e
(z, y € 4), then zy=yy. Indeed, [z]e=[y]e implies that y e[x]e, and so
zey. By the definition of ¢ this means zy =yy.

oy is a mapping from A into B since D(p)p=A/e and D(p)=A/e.
Finally we prove that = y. Indeed, for € 4 we have

2(pp) = (ol = ([xle)g = ax,
completing the proof of Theorem 1.

§3. ALGEBRAS AND RELATIONAL SYSTEMS

We will study the basic properties of universal algebras in Chapter 1,
and of relational systems in Chapter 6. However, we want to discuss some
results concerning special types of algebras and relational systems, e.g.,
semigroups, partially ordered sets, and so on. We give at this point the
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general definitions only to see that these specific systems are special cases
of the general definitions.

A universal algebra or, briefly, algebra U is a pair (4; F), where 4 is a
nonvoid set and F is a family of finitary operations on 4. F is not neces-
sarily finite, and it may be void. When F is finite, F={f,, - - -, fo_1}, we
denote the algebra (4; F> by {A4;fo, -+, fa-1)-

A relational system U is a pair {4; R), where A is a nonvoid set and R
is a family of (finitary) relations on A. Again, if R={r,, .-, r,_,} we
write (A; g, +, Tn_1y for A.

In both cases, 4 is called the base set of 2. Algebras and relational sys-
tems will be denoted by German capital letters: %, 8, €, . .-, &, -, B, - --
and the base sets by the corresponding italic capital letters 4, B, C, - - -,
L,..., P,.... Thus if we say that 2 is an algebra and a € 4, it is under-
stood that A is the base set of %A. In Chapter 1 and Chapter 6 the definitions
of algebras and relational systems will be slightly modified.

Now we give examples of relational systems and algebras:

1. A partially ordered set is a relational system B =(P; <), where “ £”
is a binary relation on P satisfying the following three conditions for all
a,b,ce P:

(i) a=a (reflexivity);
(ii) a<b and b<a imply a=> (antisymmetry);
(iii) ¢ =b and b=c imply a <c (transitivity).

“ <7 is called a partial ordering relation. a <b will stand for @ <b and
a#b, and a=b for b<a. Examples of partially ordered sets are
(Part(4); <, 6(4)=(B(4); <), and (P(4); .

If B is a partially ordered set and H# @, H< P, then (H; <p) is also
a partially ordered set. As we agreed, we will write (H; <) for (H; < py).

2. A chain €=(C; <) is a partially ordered set satisfying the additional
condition

(iv) a<borb=aforall a,beC.

(A chain is also called a linearly ordered set or a totally ordered set.)

If B is a partially ordered set, @ #C< P and €=(C; <) is a chain,
where < is the restriction of the partial ordering of B to C, then € is
called a subchain of B or a chain in PB.

Example: ({@, {a}, 4}; <) is a chain in (P(4); =) ifaec 4.

3. A lattice is an algebra (A4; v, A), where Vv and A are binary
operations on 4, called join and meet, respectively, satisfying the following
laws for all @, b,ce 4:

(i) ava=a,

) tent la
ana=a (tdempotent laws)
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(i) avb=bva,
aANb=bAa;

(iii) av(bvec)=(avd)ve,
an(bAc)=(aAdb)Ac;

(iv) aA(aVvd)=a,
aV(aAb)=a.

(commutative laws)
(associative laws)
(absorption laws)

Example: (P(4); U, N) is a lattice.

4. A distributive lattice (A; v, A is a lattice in which for alla, b,ce 4
we have aVv (bAc)=(aVvbd)A(avec).

Example: (P(4); U, N) is distributive.

5. A Boolean algebra is an algebra B=(B; v, A,’,0,1> with two
binary operations v, A, one unary operation ’, and two nullary operations
0, 1, such that the following conditions are satisfied:

(i) <B; v, A) is a distributive lattice;
(ii) Ova=a,aAl=a for all a € B;
(iii) ava’'=1 and a Aa’=0 for all a € B.

Example: (P(4); U,N,’, &, 4) is a Boolean algebra. This Boolean
algebra will be called a Boolean set algebra and will be denoted by B(A4).

If ¢(B; v, A,’,0,1> is a Boolean algebra, then (B; v, A> will be
called a Boolean lattice.

6. A semigroup (4;-) is an algebra with one binary operation such that

(@a-b)-c =a-(b-c) forall a,b,ce 4.

An example of a semigroup is the algebra of all mappings of 4 to 4,
(A4; - (see §5). In semigroups (and in general, whenever an operation is
associative) we will write ay-a,---a,_, for (---(ap-ay)-++)-a,_;, and in
semigroups we will write ab for a-b.

7. A group is an algebra &=(G; -, 1), with one binary operation - and
one nullary operation 1 such that the following conditions are satisfied:

(i) {@G;-> is a semigroup;
(ii) 1-a=a-1=a for all a € G,
(iii) For all a € G, there exists a b € G such that a-b=b-a=1.
Sometimes, by a group we mean an algebra (G;-, “1, 1> where “lisa
unary operation such that (i) and (ii) hold, and
(iii") aa~l=a"ta=1.

It will always be made clear which definition is used. If ab=ba for all
a, b € G, the group will be called commutative or abelian.

8. A ring R=<(R; +,-,0) is an algebra with two binary operations
+, - and a nullary operation 0 such that

(i) {R; +, 0) is a commutative group;
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(ii) (R;-) is a semigroup;
(iii) a-(b+c)=a-b+a-cand (b+c)-a=b-a+c-aforalla, b, ce R.

9. A diviston ring {R; +,-, %, 0,1> is a system with two binary
operations +, -, one unary partial operation ~1, and two nullary opera-
tions 0, 1 such that

(i) <R; +,-,0>isaringand forallae R,a-1=1-a=a;
(ii) @~ is defined for alla # 0 and a-a~*=a"t-a =1.

A system like a division ring, that is, a system in which we have partial
operations as well as operations, is called a partial algebra. To fit partial
algebras into the framework of relational systems we must replace every
partial operation by the relation which describes it; in Chapter 2, however,
we do not use this way of dealing with partial algebras.

§4. PARTIALLY ORDERED SETS

Let B=(P, <> be a partially ordered set. The relation = (the inverse
of <)isalso reflexive, antisymmetric, and transitive, hence ( P; 2 >isalso a
partially ordered set, called the dual of 9. (This is an ambiguous notation,
used for want of a better one.) The duality principle utilizes this simple
observation; it states that if a statement on partially ordered sets is
dualized, that is, all < are replaced by =, then if the statement is true,
80 is its dual.

Given HS P, a € P is an upper bound of H if b<a for all be H; a is
called the least upper bound of H, in symbols, l.u.b. (H), if:

(i) @ is an upper bound of H;
(ii) if b is any upper bound of H, then a <b.

If the l.u.b. (H) exists, then it is unique. Consider (I, <), where I is
the set of all integers and < is the usual ordering of integers. Take H=1.
Here, no upper bounds for H exist; hence, there does not exist a l.u.b.
for H.

Consider (R; <), where R is the set of rationals with the usual partial
ordering <. Let H={r|r € R and r2<2}. H has upper bounds, but the
l.u.b. of H does not exist because V2 is not rational.

In general, we write

Lub. (H) = V (k| ke H),

which becomes a Vv b in the case when H has two elements, a and b.
Lower bounds and the g.l.b. (greatest lower bound) are defined dually.
Also, g1b. (H)= A (k| h € H), which becomes a Ab in the case H has
two elements, a and b.
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A partially ordered set $ is called directed if any two element subset of P
has an upper bound in P.

A partially ordered set L is a lattice if a Vb, a Ab exist for all a, b e L.
Note that the dual of a lattice is a lattice again. Hence the duality principle
applies also to lattices. Now we have two definitions of lattice: lattice as
an algebra and lattice as a partially ordered set. The two definitions are
equivalent in the following sense:

Theorem 1. 1. Let 8=<L; v, A) be a lattice. Define a binary relation
< on Lby asb if and only if avb=>b. Then 8°=(L; <) is a partially
ordered set, and as a partially ordered set it is a lattice; furthermore
Lu.b. ({a, b})=av b and g.l.b. ({a, b)}=aAb.

2. Let @ ={L; <) be a partially ordered set which is a lattice. Set

avb = lub. ({a, b})
and
aAb = glb. ({a, b}).

Then &*=(L; v, A 18 a lattice, and a <b if and only if a v b=b.
3. Let =(L; Vv, A) be a lattice. Then (2°)* =Q.
4. Let =<L; £ be a lattice. Then (2*)°=2Q.

A lattice £ is called complete if l.u.b. (H) and g.l.b. (H) exist for all
H, Hc L. The dual of a complete lattice is a complete lattice.

If 8 is a complete lattice then it always has a least element 0 and
greatest element 1. Then for all H< L

V (a|a € H), A (a|a € H)
exist and if H= &, then

V (a|aeH) =0, N (@|aeH) =1.

The Boolean algebra <{B; v, A,’,0,1> is called complete, if
{B; vV, A) is complete.

Examples: Every finite lattice is complete. The set of all reals in
[0, 1] with the usual ordering is a complete lattice. The lattice of all closed
subspaces of a topological space is complete. (P(4); ) is a complete
lattice. The partially ordered set of all rationals in [0, 1] is not complete.
B(4) is a complete Boolean algebra.

As we remarked in §1, our entire discussion is based on intuitive set
theory. That is, we consider the basic concepts as intuitively clear notions
and the facts we use from set theory are also intuitively clear. There is,
however, one exception, which arises in the following way: If we are given
a nonempty set A4, then, by definition, we can select an element a € 4.
Similarly, if we are given n nonempty sets, 4,,---, 4,_;, then we can
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select one element from each, ay € 4y, -+, a,_, € A,_;. In other words,
we can select one element from each set simultaneously, that is, there
exists a function f from {0,-.-,n—1} into | J (4,|0Zi<n) such that
f(&) € 4, for all 0 <7 <n. The controversial question is the following: If we
are given an infinite number of nonvoid sets, is it still possible to select
simultaneously one element from each set? The axiom which states that
this can be done is called the Axiom of Choice, two equivalent formulations
of which follow.
Axiom of Choice.

(AC,) Given any set A, there exists a function f: P(A) — A such that if
& # B e P(A), then f(B) € B. (f is called a choice function on A.)

(AC,) Let (B,| i€ I) be a family of nonvoid sets. Then [T (B; |iel#a.

(AC;) Implies (AC,). Set A= |J (B;|iel). By (AC,), there exists a
mapping f: P(4) — A, with f(B;) € B,. An element g in [[(B;|i€I) can
be defined by g(s)=f(B)), for i € I. Thus [ ] (B,|ie )# @.

(AC,) Implies (AC,). Take a set 4. By (AC,),
[1(B|Be P(4) and B # o)

is nonvoid. Let ge[](B|Be P(4A)and B# z). Then g(B)e B. We
define ¢ in any way at @ . Thus we get a choice function g.

We will give without proof four nontrivially equivalent formulations of
the Axiom of Choice.

Let g =(P; £)> be a partially ordered set and let € be a chain in %PB.
The chain € is called mazimal if C = D< P implies that ® is not a chain
in $B. It is easy to see that € is maximal if and only if for every a € P which
is not in C, there exists a b € C such that neither ¢ = b nor a £b holds.

(1) Maximal Chain Principle. Every chain in a partially ordered set is
included in a maximal chain.

(2) Zorn’s Lemma. Let A be a set, and let P< P(A4). Assume that if €
is a chain in (P; =), then | J (X|X €C) e P. Then P has a maximal
element M (i.e., M € Pand if M= X € P, then M =X).

A system P over a set A is of finite character when B € P if and only if
every finite subset of B is in P.

(3) Teichmiiller-Tukey Lemma. Let P be a nonvoid system of finite
character of subsets of 4. Then there exists a maximal subset, of 4 which
belongs to P.

The partially ordered set (P; <> is called a well-ordered set if any
nonvoid subset H of P has a least element. It is easy to see that every
well-ordered set is a chain.

(4) Well-Ordering Principle. Given a set 4+# &, we can define a binary
relation £ on A4 so that (4; <) is a well-ordered set.

In other words, every nonvoid set can be well ordered.
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It will be convenient to consider the void-set @ as a well-ordered set;
then (4) can be rephrased to state that every set can be well ordered.

The well-ordering principle (and its equivalence to the Axiom of Choice)
is due to E. Zermelo, who was the first to recognize the importance of the
Axiom of Choice. The maximal chain principle is due to F. Hausdorff.
For historical notes and proofs of the equivalence, see, e.g., G. Birkhoff [6].

To prove that all the statements listed above are equivalent is not very
easy; however, the only difficult step is to prove that the Axiom of Choice
implies any one of the others.

It is well known that intuitive set theory is contradictory. The contra-
dictions arise not from sets which we use in everyday mathematics, but
from considering ““very large” sets, as, for instance, the set of all sets.
The contradictions can be resolved (or so we hope) by, for instance, the
introduction of the concept of class for “very large” sets; classes cannot
be elements of sets or classes.

For a very clear discussion of Axiomatic Set Theory and the definition
of classes, see E. Mendelson, Introduction to Mathematical Logic, D. Van
Nostrand Co., Princeton, N.J., 1964, Chapter 4.

* * *

The sets A, B are equipotent, provided there exists a mapping ¢: 4 — B
which is 1-1 and onto. It is easy to see that the equipotency of sets is
reflexive, symmetric, and transitive. The equivalence classes (these are
really classes) are called cardinal numbers or cardinals.

If A is any set, let |4| denote the equivalence class containing 4, i.e.,
the cardinal number of 4. |4] is also called the power of 4.

The equivalence class containing n-element sets will be denoted by n;
the equivalence classes containing the integers and the reals are denoted
by R, and ¢, respectively.

Operations on cardinal numbers are:

(i) m+n (addition);
(i) m-n (multiplication);
(iii) m" (exponentiation).

To define the operations, take m=|4|, n=|B|, 4 " B=@. Then
|4V B|=m+n, |AxB|=m-n, and |48|=m" Of course, it has to be
proved that the results of the operations depend only on m and n, and not
on any particular choice of the sets 4 and B.

If (m;|iel) is a family of cardinals, |4,/ =m,, and i#; implies that
AN A,=g, then |\J(4|ieD)|=3 (m|iel), and |[](4]|iel)|=
I'T(m, |7 e I). (The Axiom of Choice is used!)

We write m < n if there exists a mapping ¢: 4 — B which is 1-1. Again
we must prove that the definition is independent of 4, B.
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If n<X,, then n is called a finite cardinal; otherwise it is an infinite
cardinal.

Theorem 1. (i) Let A be a set of cardinals. Then (A; <> is a well-
ordered set.
(ii) If m or n is infinite, then

m+n = max (m, n);
if in addition m#0, n#0, then
m-n = max (m, n).

(iii) 2™>mand 2™ =|P(A4)|, where |A|=m.

A cardinal m is regular if for any family of cardinals (m;|i € I), [I|<m
and m; < m for i € I imply that 3 (m;|i e I)<m.

For example, N, is regular.

We now discuss the concept of ordinal.

Take two partially ordered sets <4; <>, (B; <). We define the concept
of isomorphism of A={4; <) and B=(B; <>: A and B are said to be
tsomorphic if there exists a mapping ¢: 4 — B which is 1-1 and onto
and for which

ap<a, ifandonlyif ayp=a,p (ao, @, € 4).

Such a mapping ¢ is called an isomorphism.

Two well-ordered sets 2% and B have the same order type if they are
isomorphic. The equivalence classes obtained this way are called ordinals.
Consider the set {0,1,--.,n—1} with the usual ordering 0<l<--.
<n—1. The equivalence class containing this chain is the ordinal denoted
by n.

The equivalence class containing @ consists of @ ; it will be denoted
by 0.

Assume that the order type of (4; <) is o and that the order type of
(B; £) is B. If there exists a mapping ¢: 4 — B which is 1-1 and which
preserves ordering (that is, a, <a; implies agp <a,p) then we write a <p.
By definition, 0 £ «, for all ordinals «.

Consider the chain N of nonnegative integers; the corresponding
ordinal is denoted by w. An ordinal « is called infinite if w <c; otherwise
it is finite.

Theorem 2. (i) Let A be a set of ordinals; then (A; <) is a well-ordered
set.
(ii) The order type of {y|y<a}; <) is
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Theorem 2 implies that every well-ordered set is isomorphic to the well-
ordered set of all ordinals less than a given ordinal. (Note that in many
axiomatic set theories, an ordinal equals the set of smaller ordinals.) Thus
if <I; £ is a well-ordered set, then there exists an ordinal « such that we
can write I in the form I ={x, | y <o} and x, <z, is equivalent to y < 3.

We now define the sum of two ordinals. Let «, 8, (4; <> and (B; <)
be as above and in addition assume that A N B= &. Define £ on 4 U B
as follows:

(i) if ¢, y € 4, £ y has its original meaning;
(ii) same as (i) for z,y € B;
(iii) x € 4 and y € B, then z<y.

Now we take (4 U B; <. It can be shown to be a well-ordered set. The
order type of (4 U B; <) is defined to be «+ 8.

This definition can be extended to the case of an infinite number of
ordinals as follows: Let (o |¢ € I) be a family of ordinals and let {I; <)
be a well-ordered set of order type B. Take a well-ordered set {4;; <) of
order type «, for each 7€l and assume that 4, N 4;,= o if i#j. Set
A= J (4,|7€l) and define < on A4 as follows: if z,y € 4;, then z=<y
keeps its original meaning; if x € A;, y € 4, 1#7, then z <y if and only if
t<j. Then (A4; <) will be a well-ordered set and its order type will be
defined to be 3 (a;| i € I). If o;=« for all 4 € I, then 8-« will denote the
ordinal 3 (|7 € I).

An alternative way of defining multiplication of ordinals is as follows:

Let o, B, (4; <) and (B; <) be given as above. Set {a,, by) <<{a,, b;>
if and only if ay<a,, or ag=a, and by <b,. Then (4 x B; <) is a well-
ordered set, the order type of which will be denoted by «-B. This partial
ordering of 4 x B is called the lexicographic ordering.

Note that neither the addition nor the multiplication of ordinals is
commutative.

Given an ordinal o, we denote by & the power of «, defined as follows:

Let o be the order type of {4; <); then ¢=|4]|.

Let m be a given infinite cardinal and 4={«|a=m}. It follows from
the well-ordering principle that A is not void. Thus by Theorem 2, it has
a smallest element. It is called the initial ordinal of power m, and it will
be denoted by wp.

Let {I; £> be well ordered, let «; be an ordinal for all ¢ €I and let
o; S« if 1<j. Then lim (o | t € I) will denote the smallest ordinal « such
that o; <o for all 1 € I. A limit ordinal o is an ordinal which can be ex-
pressed as lim (|7 € [)=a with o;<« for all i€ I. Thus 0 and w are
limit ordinals. Either « is a limit ordinal or «=8+ 1 for some ordinal B.

If we take any subset of the class of all infinite cardinals, then the usual
ordering makes it a well-ordered set. This implies that we can index the
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infinite cardinals with the class of all ordinals; let X, denote the infinite
cardinal which is indexed by the ordinal «. Then

R, < X, ifandonlyif « < §pB
and thus all the infinite cardinals are members of the sequence
Ro, Ry, oo, Ry, Ry pq, e

If m=N,, we will write w, for wy. Thus wy=w.
The Generalized Continuum Hypothesis is the assumption that 2%« is the
cardinal which follows X,, that is

2Wa = xo:+1'

This can be expressed without the X, notation as follows: if m is an
infinite cardinal, then there is no cardinal n with m <n <2™. Although we
shall use the Axiom of Choice without any special reference to it, whenever
we use the Generalized Continuum Hypothesis in proving a theorem we
shall mention this fact explicitly as an assumption in the theorem.

Using ordinals, we can generalize finite induction as follows:

Transfinite Induction. Let the statement ®(c) be defined for all ordinals
. Assume that
(*) if O(B) holds for all B<«, then O(«) holds.
Then ®(c) holds for all ordinals «.

Proof. Assume that there exists a § for which ®(8) does not hold.
Consider the set I ={y |y <8 and ®(y) does not hold}; by Theorem 2, I has
a smallest member «. Obviously, «#0. If we apply (*), we get that O(«)
holds, which is a contradiction.

In most cases it is useful to replace (*) by the following three conditions:

(i) D(0) holds;
(i1) If ®(B) holds, then ®(B8+1) holds;
(iii) if «; are ordinals for A < B, with «; <« for A< 8 <8, and ®(c;) holds
for all A< B, then ®(lim (c; | A <)) holds.

Using ordinals, we can introduce transfinite sequences: let o be an
ordinal; then the elements of A"!7<% are called a-termed sequences, or,
simply, a-sequences. We also agree to write 4% for A7!17<a If fe A%, we
will sometimes write f as

<f(0)af(1)’ o 'uf(')’): o '>7<a'

A mapping f: A% — A is an «-ary operation; if w <o, we will call f an
tnfinitary operation of type a. An algebra (A; F) with infinitary operations
will mean that every f € F is a finitary or infinitary operation.

We can define similarly «-ary partial operations as mappings from some
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Bc A% into A, «a-ary relations as subsets of 4%, and relational systems with
wnfinitary relations.

It is not the purpose of this book to consider algebras with infinitary
operations. However, many results of the book can be proved for algebras
with infinitary operations. Some results along this line will be given as
exercises.

§5. STRUCTURE OF MAPPINGS AND EQUIVALENCE
RELATIONS

The following theorem describes some important properties of mappings.

Theorem 1. The algebra (M(A);->, that is, the set of mappings of a
set A into tself under product of mappings, is a semigroup. Consider the
subsets of M(A), denoted as follows: My(A), the set of all mappings of A
onto A; and M (A), the set of all 1-1 mappings of A into A. Then
{My(A);-> and (M, (A);-> are both semigroups. If ye My(A) and
o, Be M(A), then ya=yB implies that a=pB. If ye M, (4) and «, B € M(A),
then oy =By implies that o=p.

Let ¢ denote the identity mapping, i.e., xe=x for all x € A. Then

e e Mo(A) N Mi(A).

Every ye Mo(4) (ye M (A)) has a left inverse (right inverse) 8, i.e.,
dy=c (y0=¢). Furthermore, {My(A) N M, (4); -, &) 18 a group.

The last part of the theorem can be generalized to 48 (see Exercises
61-63).

We will now establish the main properties of equivalence relations.

Let A4 be a set and let E(A4) be the set of all equivalence relations on 4.
We have already introduced a partial ordering on E(A4). Let us recall that
for &g, e, € E(4),

go < &, ifand only if xeyy implies ze,y.
Theorem 2. €(4)=<HE(4); <) is a complete lattice.

Proof. E(A) has a least element, namely, w. (Recall that x=y(w) if and
only if z=y.) E(A4) has a greatest element, .. (Recall that z=y(.) for all
z,y € 4.) (This is why the letters w and . were chosen to denote these
equivalence relations: w is the greek o and w is the zero of €(4); « is the
greek ¢ and . is the 1 of €(A4).)
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Let (|1 € I) be a family of equivalence relations I# &. Define a new
equivalence relation @ in the following way:

z = y(®) ifand onlyif =z = y(g) for all te 1.

Then ®= A (g|i€l).
We will verify this statement in three steps.

(i) @ € E(4). This means that @ is an equivalence relation, i.e., it is
reflexive, symmetric, and transitive.

(a) a=a(®) is equivalent to a=a(e;) for all 4 € I, which is true since all

the ¢, are reflexive.

(b) a=0b(D) is equivalent to a=b(e;) for all 7 € I; thus b=af(e,) for all

t € I and so b=a(®), since all the ¢ are symmetric. Therefore, ® is
symmetric.

(c) A similar argument shows the transitivity of ®.

Hence ® € E(A4).

(ii) ®=<e¢ for all 7 € I. Indeed, x=y(®P) implies x=y(¢;) for all 2 € I.

(iii) Let ®=<e for all ¢ € I. This implies that ® <®. Indeed, take
z, y € A such that x=y(0); then x=y(e,) for all ¢ € I, which is equivalent
to x=y(®). Hence, © < .

Hence, by (i), (ii), and (iii), A (¢ |7 € I) exists and equals ®.

By Exercise 31, the existence of arbitrary meets implies that €(A4) is a
complete lattice. However, this only guarantees the existence of infinite
joins without explicitly describing them. Such a description follows.

Let

(& I 1€l)
be a family of equivalence relations on A. We define a relation ¥': z=y(¥')
if and only if there exists a finite sequence of elements zg, zy, - - -, 2,

x=2y, Yy=2,, such that for all 1<j<n there exists an i, with the

property:
2; = zj-l(eu) (.7:: 1,2,---,’”).

Then ¥'= \/ (¢ | ¢ € I). Again, we verify this statement in three steps.

(i) ¥ e E(A).

(a) (Reflexivity) x=x(¥) because the sequence =z, x satisfies the
requirement.

(b) (Symmetry) If x=y(¥), let z,,2,,---,2, be the corresponding
sequence. Then the sequence z,,2,_,,---,%, Will guarantee
y=z(¥).

(¢) (Transitivity) Let x=y(¥) and y=2z(¥). If we put together the two
sequences that correspond to the two relations, then we get a
sequence which guarantees x=z(V').

(ii) =Y for all 1€ l. If x=y(g), then z=y(¥), since the sequence

z, y guarantees this.
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(iii) If @ € E(A4) and &= 0 for all ¢ € I, then ¥'< 0. Let z=y(¥). By

definition, this means that there exists a sequence zy,---,z, (2;€ 4),
T=z9, Y=2,, With 2;=2;,_y(¢;) (j=1,---,n). Then also z,=z;_,(0) for
j=1,2,...,n. But © is an equivalence relation, and so it is transitive.

Hence, z=y(0).
This completes the proof of our theorem.

We will give an alternative description of ®, v ®,. Consider the relations

e = 0,

e = 0,0,

ea = 00,0,
g3 = 0,0,0,0,,

We have immediately that ¢g<e; <e,<--- and < O,V O,. Then
U(e,|0§_i<w)= @0 \% @1.

The proof is immediate.

§6. IDEALS AND SEMILATTICES

Consider the algebra F={F; v) with one binary operation. { is a
semilattice if for all a, b, c € F':

(i) ava=a,
(ii) avb=bva,
(iii) av (bve)=(avbd)ve.

If we have a partially ordered set (F; <), it is called a semilattice if
Lu.b. ({a, b}) always exists.

The ““equivalence’ of the two notions can be formulated in the same
way as was done for lattices in §4.

In a semilattice, zero is an element 0 satisfying 0 v a=a for every a.

An tdeal of a semilattice §¥ is a nonvoid subset I of F such that, for all
a, be F

aVvbel ifandonlyif a,bel.

An ideal can also be characterized by:

(i) @, be I implies that av b € I;
(ii) @ € I and c<a imply that c e I.

Indeed, assume that I is an ideal. Then (i) is trivial; further, if a € I,
c<a, then cva=a e I; thus ¢,a € I, and so ¢ € I, proving (ii).
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Now assume (i) and (ii) hold for a nonvoid I < F. We will show that I
is an ideal. By (i), a, b € I implies that a vb € I. Let us now assume that
avbel; since agavb, b<avb, we have, by (ii), that a, b e I, which
was to be proved.

Theorem 1. Let ¥ be a semilattice with 0. Let 1(%) be the set of all ideals
i F. Then I(F); <>=(F) is a complete lattice, called the lattice of ideals
of F.

Proof. The zero element in () is the ideal {0} consisting of the zero
element 0 only. The greatest element in ¥(F) is F.

Let (I,|j € J) be a family of ideals in F,J# @. Then () (I;|j€J)isan
ideal, i.e.,

N Uy|jed) e I(F).
Since {0}= (M (I;]j €J), () ,;]|j €J) is nonvoid. (M (I,|j € J) is an ideal
because if @ v b is in this intersection then a v b € I, for all j € J; since all
the I, are ideals, a, b € I; for all j € J; therefore, @ and b are in the inter-
section of all the I, By a similar argument, if @ and b are in the inter-
section, then so is a v b.

Since J(F) has a unit element and infinite meets always exist, we get
from Exercise 31 that 3(F) is a complete lattice. This completes the proof
of Theorem 1.

Let H be any nonvoid subset of ¥, and let (H] denote the smallest ideal
containing H. (H] is called the ideal generated by H and can be constructed
as the intersection of all ideals containing H.

If H={a, b, .-}, we shall write (@, b, - - -] instead of ({a, b, ---}]. (a] is
called the principal ideal generated by a; for instance, (0]={0}.

It is obvious that

(@] = {x|z £ a}.
This implies that if (¢]=(b], then a=b. A general description of (H] is
the following:
(H]={t|t<hoV --- Vh,_, for some k; € H}.
Let K denote the righthand side of the preceding equality. Obviously, if K
is an ideal, then it is the smallest ideal containing H. Property (ii) is trivial
for K. To prove (i), let t<hoVv ---Vh, ,and sShyV - Vh,_;. Then
SVEZhy V- Vh,_y VhyV: -V h,_y;
hence, s and t € K imply s vt € K, verifying property (i).
Note that we have used Exercise 67 in the proof.
A simple application of this result is the following: Since

V (If|jEJ) = (U (Ii|jEJ)]

therefore we get:
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Corollary. te\/ (I;|jeJ) (J+# @) if and only if there exist jo,- - -,
Jn-1€dJ and x; € I; such that

=z, Va, V---Vua

n-1°

To characterize the lattice of ideals of a given semilattice, we need two
concepts.

Let =<L; =) be a complete lattice. Let @ € L. The element a is called
compact if the following condition is satisfied:

If a< \/ (%;|i€l), where ;€ L for each i€, then there exists
I, <1 such that I, is finite and a < \/ (z;|1 € I,), i.e., if a is contained
in an infinite join, it is already contained in a finite join.

(The adjective “compact’ is used because of the analogy with the
concept of compact subspaces in topology.)

A lattice is called algebraic if:

(i) it is complete;

(ii) every a in the lattice can be written as a= \/ (z;|7 € I), where all
the z; are compact.

Examples: (w+1; <) is an algebraic lattice, where every element,
except the greatest one, is compact. Every finite lattice is algebraic.

Lemma 1. Let I € I(). I ts compact in (F) tof and only if I is a principal
tdeal.

Proof. Let I be a principal ideal, I =(a]. Suppose that
@=IcVUlje))d+ 2.
Then a e\ (I; Ij €J) which implies that a<x; vz, v--- vz, |, where
x;, €l,,j,€d. Let J'={jo, - -, Jn-1}. This implies that
aeV I;|jel’)

and therefore (a]< \/ (I,|j €J’), which means that I is compact.
For every ideal I, we have the equality

I=\ (a]|acl).
Assume now that I is compact. Since I< \/ ((a] | a € I), there exists a
finite J<I such that I< \/ ((@]|aeJ). Set J={ao, -, a,-,}. Then
I=(ag]V(a,]V - - V(a,_,], i.e.,, I is a finite join of principal ideals. It
follows that I=(agVa,V - --Vva,_,], i.e,, I is a principal ideal. This
completes the proof of the lemma.

The formula I= \/ ((a] | a € I) means that every ideal I is the join of
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principal ideals, which by Lemma 1 means that in the complete lattice
JX(F), every element is a join of compact elements.

Theorem 2. Let ¥ be a semilattice with zero. Then J(F) s an algebraic
lattice.

Remark. As we will prove later on, many lattices constructed from
universal algebras are algebraic. The lattice J(&) was first characterized
by A. Komatu, Proc. Imp. Acad. Tokyo, 19 (1943), 119-124, in the special
case when & is a lattice. A general characterization theorem is in G.
Birkhoff and O. Frink [1]. Compact elements were introduced by L.
Nachbin, Fund. Math. 36 (1949), 137-142; see also J. R. Biichi [1]. For
Theorem 3, see also G. Gritzer and E. T. Schmidt [2].

Next we prove that J(gF) is a typical example of an algebraic lattice.

Theorem 3. Let & be an algebraic lattice. Then there exists a semilattice
& with zero such that L is isomorphic to J(F).

Remark. 2 and ¥(&) are partially ordered sets. Isomorphism of par-
tially ordered sets was defined in §4.

Proof. Let F be the set of compact elements of L.
(i) Ifa,be F, thenalsoavbe F.

Let avbs V (x;|i€J), where z,e L for 1eJ. Since a<avb,
a< V (;| ¢ eJ), which by the compactness of a implies that there exists
a finite J' =J such that

as V (x]|ied).
Similarly, b< \/ (z;|j € J”), where J”<=J and J” is finite. Then
avbsV(x|ie VI,
where J’' U J” is finite. Hence, a v b is compact, that is, a vb e F.
(ii) (F; v ) is a semilattice with the zero 0.

Note that the zero element is alwayé compact.
For a € L set

I, ={z|xeF and z < a}.
(iii) I, € I(F).
This is immediate from (i). Note that I,=(a] N F.
(iv) If a#b, then I,#1,. If a>b, then I,01,.
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We first verify the following formula:

a=YV(x|zel,) forevery aclL.

Since g is an algebraic lattice, there exists a set H of compact elements
such that
a=Y\ (|zeH).

Since x € H implies « < a, therefore H<I,. Thus,
a=V(@|seH) 2V @|sel) S,

which implies the required formula.
This formula implies that if I,=1,, then

a=\V(x|zel,)=V (x|zel,) =b,

which proves the first part of (iv).
Now assume that a>b. By the definition of I,, I, it is obvious that
I,21,, and since I,+I,, we obtain I,21,.

(v} Let I € I(F); then there exists an a € L such that I=1,; in fact,
a=V (y|yeD).

Let a= V (y|y € I). Then we have an I,, which consists of all compact
elements <a. Hence I,21. To show that I,=1, we must prove that if
z e l,, then x € I. Let « € I,; this implies that x is a compact element and

vsa=V(ylyel).

Hence, z< V (y|y € I') for some finite I' < I. Set I'={y,, - - -, y,-,} and
Y=YV '+ V¥y,_;. Then x<y and y € I because [ is an ideal; thus, 2 € I,
which was to be proved.

(vi) The correspondence ¢:a — I, sets up an isomorphism between
2 and X(F)-

@ is 1-1 by the first part of (iv). ¢ is onto by (v). ¢ preserves the order
by the second part of (iv), and ag = bp implies a 2 b by (v).
Hence, ¢ is an isomorphism. This completes the proof of Theorem 3.

Another useful representation of algebraic lattices can be given in
terms of closure systems.

Let 4 be a set and let &7 be a system over A4, that is &/ < P(4). If &/ is
closed under arbitrary intersection, then & is called a closure system. Note
that 4 € &7, by the definition of the intersection of a void family of sets.

Take X < 4. Set

[X]= () (B|Bes, B2 X).
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[X]is called the member of & generated by X and if more than one closure
system is under consideration, we will write [X],. Then:

(a) [X] always exists for all X< 4;
(b) [X] e o;
(c) [X] is the smallest member of &/ containing X.

It is easy to prove that X = Y implies [X]=[Y] and that [[X]]=[X].

If o7 is a closure system, then by Exercise 31, {(&7; =) is a complete
lattice. We want to impose a further condition on &/ which will make this
lattice algebraic.

Let #<S P(A). B+ @ is a directed system if (#; =) is a directed par-
tially ordered set. Now we define the notion of an algebraic closure system.

An algebraic closure system &7 satisfies:

(i) & is a closure system;
(i) if g £B </ and # is a directed system, then

UX|XeB)e.

It should be remarked that it is enough to formulate condition (ii) for
chains rather than directed systems. This would not affect the notion of an
algebraic closure system.

We give an example of an algebraic closure system. Let % be a semi-
lattice with 0. Set & =1(F)< P(F).

Lemma 2. &/ is an algebraic closure system.

Proof. (i) We already know that &7 is a closure system.

(ii) Given a directed system ## @ of ideals, we must show that the
union of the members of & is an ideal of §. Set B= | (X | X € #). To show
that B is an ideal, let x, y € B and z<z. Since z, y € B, there exist X,
Y € # such that x € X, y € Y. Since # is directed, there exists a Z e #
such that X< Z and Y<Z; then #,yc€ Z and z < z. Inasmuch as Z
is an ideal, this implies that vy, z € Z< B. Thus, B is an ideal.

Let o7 < P(A) be an algebraic closure system which is kept fixed in the
next three lemmas and Theorem 4. Since 7 is a closure system, we again
have the notion of the member [X] of & generated by X for all X< 4.

Lemma 3. Let X< A. Then [X1=\J ((Y]| Y =X and Y is finite).

Proof. Set X= {J ([¥Y]| Y <X and Y is finite).

(i) Obviously, X < X. For, z € X implies [{x}]< X. But we always have
z € {r}<[{z}], so z€ X.

(ii) X € o7. The system #Z={[Y]| Y <X and Y finite} is directed since
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(Yol [ Y ]<s[You Y, 1e Zif Y,and Y, are finite subsets of A. Therefore,
X=J(Z|ZecB)e .

(iii) X <[X], since Y € X implies [ Y]<[X].

(i), (ii) and (iii) imply, by the definition of [X], that X =[X].

Lemma 4. In the lattice (; <),

V (4|iel) = [ (4]iel))
ifdie st foralliel, I+ @.

Proof. See Exercise 31.

Lemma 5. Let Be.o/. Then B is compact in {Z; <) if and only if
B=[X], for some finite X< A.

Proof. Assume that B=[X], X finite. Suppose that B< \/ (4;|7 € I);
then

Xc[X]=B<sV(licl)=[Ud]icD)
where the last equality holds by virtue of Lemma 4.
Let X={xg,---,2,_,}. Then z; e[| (4;|¢€ )] and so by Lemma 3
there exists H,< | ) (4,4 € I) such that H, is finite and z, € [H,].
Thus, we can find I;<1, I; finite, such that H;= |J (4|t € l)). Set
J=1\J I;|0=j<n). Then X<[|J (4;]|¢€J)] so that
B=[X]<[UlieNN]=[UA]ie))] =V (4]ied).

This proves that B is compact.
Conversely, assume that Be ./ is compact. Now using Lemmas 3
and 4,

B ={B]=\J(Yl|Y < B, Y finite)
=V ([Y]| Y < B, Y finite).

Therefore, B=[Y,]v ---Vv[Y,_,], where Y,,---, ¥, _, are finite and
€B.Set Y=Y,U:---U Y, ;. Then Y< B, Y is finite and B=[Y].

Lemma 3 shows that every element of {./; <) is a union of compact
elements. Thus:

Theorem 4. (o7; < is an algebraic lattice.
Summarizing, we get the following result.

Theorem 5. Given a lattice & the following conditions are equivalent:

(i) s an algebraic lattice;
(ii) L us isomorphic to some J(F), where § is a semalattice with 0;
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(iii) there exists an algebraic closure system & such that & s isomorphic
to {; <.

Proof. (i) implies (ii) by Theorem 3. (ii) implies (iii) by Lemma 2, and
(iii) implies (i) by Theorem 4.
* * *

Let <L; v, A) be a lattice; then (L; v > and {L; A) are semilattices.
An ideal of {L; v) is called an ideal of (L; v, A, while an ideal of
{L; A} is called a dual ideal of {(L; v, A)>. We keep the notations (H],
(a] for ideals, while we use [H) and [a) for dual ideals.

An ideal P of @ is called proper if P+ L. A proper ideal P is called
prime if a, b ¢ P implies that aAb ¢ P.

Theorem 6 (G. Birkhoff and M. H. Stone). Let 8={(L; v, A) be a
distributive lattice, I an ideal of L, a€ L, and a ¢ I. Then there exists a
prime ideal P witha ¢ P2 1.

Proof. Let & denote the system of all ideals J of & with a ¢ J21. We
will show that & satisfies the assumption of Zorn’s Lemma: Let € be a
chain in (#; =) and let K= | J (X| X €%). Since a ¢ X for all X €&,
a ¢ K; further, X1 for all X € ¢; therefore, K=1. Then by Lemma 2,
K is an ideal and a ¢ K21I; thus K € #. By Zorn’s Lemma, 2 has a
maximal element P. Assume that P is not a prime ideal; then there exist
elements x, y € L such that z, y ¢ P and xt Ay € P. Let Iy=(P U {z}] and
I,=(P U {y}]. Then I,> P and I, > P and so a € I, and a € I,. By the
corollary to Theorem 1, this implies the existence of pg, p; € P with
a<p,Vxanda<p,Vy;thus

a=(PoVE)A(P1VY) = (Do AP V(Do AY)V (TADL)V (TAY).

Since the element on the right-hand side is in P, a € P, which is a
contradiction.

A dual ideal D is called proper if D+ L. A proper dual ideal D for which
x,y ¢ D implies that x vy ¢ D is called a prime dual ideal.

Theorem 7. Every proper tideal (dual ideal) of a distributive lattice
R s contained in a prime ideal (prime dual ideal).

A system 7 over A is said to have the finite intersection property if the
intersection of finitely many members of &7 is never void. It is obvious,
e.g., from Lemma 3, that &/ has the finite intersection property if and only
if there exists a proper dual ideal & of (P(4); <) containing all members
of &7. Thus we have the following result.
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Corollary. Every system of subsets of A with the finite intersection property
can be extended to a prime dual ideal of (P(4); <.

Using the concept of a closure system one can state a very important
technique of proof.

Principle of /-induction. Let .27 be a closure system over the set 4. In
order to prove that a proposition P holds for all elements of B=[M]< A
it is sufficient to prove that the set of all elements for which P holds

(1) includes the generating set M,
and
(2) belongs to .

We can also define ./-independence: M <A will be called .o7-inde-
pendent, if for all x € M,

z ¢ [M —{z}].

Otherwise, M is &7-dependent.
Special cases of these concepts will be used later.

EXERCISES

1. Let I, J be finite sets and let (4, |4 € I), (B, | j € J) be families of sets. Then
U A|ie)n U (B;ljed) = U (4N By|iel and jeJ).

. Prove that in a distributive lattice a A (bVc)=(aAb)V (aAc).

. Formulate and prove the statement of Ex. 1 for distributive lattices.
. Does Ex. 1 hold if we drop the assumption that I and J are finite ?

. Let (A,,,li € I and j € J) be a family of sets. Then

N (U As|ieN]iel) = U (N (Ape|ieD|ped).
6. Find and prove the analogue of Ex. 5, for expressions of the form
U (N (A|ied)|iel).
7. Define A+ B=(A—-B)U (B—A) and 4-B=A N B. Then

Gv WD

KP(X); +,-, @, X>

is a ring with ¢ as null and X as unit element. In this ring, B+ B= &
and B:-B= B for every B< X.

8. Aring (R; +, -, 0> is called Boolean if x-x =« for every x € R. Prove that
every Boolean ring is commutative, and z +x =0 for every x € R.
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. Prove that a binary relation » on 4 is an equivalence relation if and only

ifr=r-Lrrcrandr N w=w.

{4;r) is a partially ordered set if and only if r.r<r, r " r-1cw, and
w<r.

{4;r) is a chain if and only if it is a partially ordered set and r U r~1=..
Let T'(A) be the set of all partial orderings on A. Then (T'(4); <) is a
partially ordered set. Let C<T(A4) such that (C; <) is a chain and
r= U (8| 8 €C). Prove that r € T(A).

Combine Ex. 12 and Zorn’s Lemma to prove the following: Let {4;r)
be a partially ordered set; then there exists a chain {4; s> such that r<s.
Let r and s be binary relations on 4. Is it possible to express r-s and !
in terms of U, N, and — ?

Let ® and ® be equivalence relations on 4. Prove that ®-® is an
equivalence relation on A if and only if ®-®= @. @. Give an example of
O-O=0.-0 and of O- D% D. 0.

Let 4={1, 2, 3, 4}, B={1, 2}, s=(B x B)—{<1, 1>}. What is the number
of binary relations » on A satisfying gz =s. Can such an r be an equivalence
relation ?

Show that the binary relation r is an equivalence relation if and only if
r=(=((=(r"1) 1) O (=7t ().

Let A={1,2,3, 4}, e=w VU {1, 2),<2, 1>}. Find a set B and a mapping
¢: A — B such that e=¢,.

Let Ay, -+, A,_, be subsets of A. Let n be the system of all nonvoid
subsets B of A which can be represented in the form

N(A]ietyn N (4i]igr)

for some t<{0, 1, - - -, n— 1}. Prove that = is a partition of 4.

Using the notation of Ex. 19, prove that if 4;# &, then it is a union of
blocks of #.

Using the notation of Ex. 19 and 20, prove that if #, is a partition such
that every 4,# @ is a union of blocks of =;, then =; S =.

Let A, B X and let ® be an equivalence relation on X. Prove that
[A]10 N [B]®=2[4 N B]O, and equality does not hold in general, but
[4]10 U [B]®=[4 U B]0O always.

Prove that [4]0 N [B]®=[4A N B]O if [A]®=A.

Let @, and 0, be binary relations. Define @y @, as follows: x =y( @40 0,)
if and only if there exists a sequence zo=z, 2;,:-+,2,=%y such that
z1=2;_,(0,,) for 1<i=n, where ji=0 or 1. Set ¢= 0, &;=00,, ;=
000, 0,, and so on. Prove that 000 ;= U (g]|0=i<w) if O, and O,
are reflexive.

Using the notations of Ex. 24, show that if ®, and 0, are reflexive and
transitive, then ©®q,0 @, =¢, if and only if 0,0, = 0, 0,.

Under what conditions is @y @, (for the notations, see Ex. 24) an equiva-
lence relation ?

Let = be a partition of the set 4 and let B< A. Define the restriction
ng of w to B.
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What is the number of different partitions on a four-element set? Let
m(n) be the number of partitions on an n-element set. Prove that

Prove that every chain is a distributive lattice.

The l.u.b. and g.1.b. in a partially ordered set are unique if they exist.
Let B =(P; <) be a partially ordered set with a 0 (0 <« for all z € P) and
assume that any subset of P has a least upper bound. Prove that ‘B is a
complete lattice. (Hint: The greatest lower bound of a subset H of P is
the least upper bound of the set {xl z is a lower bound of H}.)

What is [T (4,|ieI)ifI= o ? Whatis A'if I= o ?

Let A be a set, R a transitive relation on 4, and <ag, @1, *+, @y, *Dy<cq
a sequence of elements of A. Assume that a,Ra,.; holds for all y<a.
Does this imply that agRa, ?

Let (P; =) be a partially ordered set. Prove that (P; =) is also a
partially ordered set, where = is the inverse of <.

Is it true that every mapping ¢ can be factored into the product p=4-y,
where ¢ is 1-1 and y is onto ?

The (n + 1)-ary relation R is associated with an n-ary partial operation if
and only if R(ay, - - -,a,_1,a)and R(ay, - - -, G, _1,a’) imply that a=a’. If, in
addition, R satisfies the condition that for every aq,- - -, a,_; € A there
exists an a € 4 such that R(ay, - - -, a,_1, a), then R is associated with an
n-ary operation.

In the axiom system of a lattice as an algebra (see §3), the first axiom can
be deleted.

Describe the lattice of all equivalence relations of a four-element set.
(A. Tarski) Let  =(L; <) be a complete lattice and let ¢ be a mapping of
L into itself. If x <y implies that xp < yg¢, then there exists an a € L with
ap=a.

(S. Banach) Let 4 and B be sets, let p: 4 — B and y: B — A. Then there
exist Ay, Ay AwithA=4,U A;and 4N A, = @ and B,, B, < B, with
B,V B;=B and ByN B;= g such that ¢,, maps 4, onto B, and
Yp, maps B; onto 4,. (Hint: apply Ex. 39 to =(P(4); =) and the
mapping X — A —(B—X¢)y.)

Use Ex. 40 to prove that if m and n are cardinals, m <n and n<m, then
m=n.

Let r, be a mapping of A, into By, for ¢ € I. Under what conditions is
U (r¢] € I) a mapping of | (4,|i e I) into \J (B,|ieI)?

Let P be a directed partially ordered set of power X,. (| P| = R,). Prove that
there is a chain € of order type = w in ‘B, which is cofinal with P (i.e., for
every x € P there exists a y € C with z=<y).

Prove that the condition that we get from (AC,) by adding “4, " 4;,= @
if ©#75” is equivalent to (AC,).

Prove that the well-ordering principle implies the axiom of choice.
(Hint: define the choice function in terms of a well ordering.)
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Prove that the maximal chain principle implies Zorn’s Lemma (find the
maximal element as an upper bound of a maximal chain).

Prove the following equivalent form of Zorn’s Lemma: Let (P; <) be a
partially ordered set in which every chain has an upper bound; then there
exists & maximal element in P,

Prove that the following statement is equivalent to the Axiom of Choice:
For every binary relation r on a set A, there exists a unary partial
operation f(x) on A such that r(a, b) implies that f(a) is defined and
r(a, f(a)).

Let r be a binary relation on 4. For X< 4 set Xo={y | y € A and there
exists an € X with r(z, y)}. Then ¢ is a mapping of P(4) into itself and
(U (Xi]|ie I))g= U (Xip| 4 € I) for any family (X, | € I) of subsets of A.
Prove the converse of Ex. 49.

Let ¢ be a mapping of P(A) into P(A4). Set X¢~ 1= | (Y| Y4 and
Y < X}. Using the notations of Ex. 49, prove that » determines a unary
partial operation (in the sense of Ex. 36) if and only if X¢ ‘e < X for all
XcA.

Combine Ex. 48-51 to give an equivalent form of the Axiom of Choice in
terms of mappings of P(A) into itself.

Let f be an n-ary partial operation on A. Does there exist an n-ary
operation g on A such that g5 =f, where B = D(f)?

Prove that the addition and multiplication of cardinals are commutative.
Are the addition and multiplication of ordinals also commutative ?
Consider the set of all ordinals « with @ =X,. What is the cardinality of
this set ?

Get a contradiction from the assumption that all cardinals (ordinals)
form a set.

Prove that if « is an infinite ordinal then n + « =« for all finite ordinals n.
When is w+ o=« true?

Prove that every ordinal has a unique representation of the form A+n,
where A is a limit ordinal and n < w.

Condition (iii) of transfinite induction can be replaced by the following:
if o is & limit ordinal and ®(f) holds for 8 < a, then ®(«) holds.

Prove that in the formulation of Zorn’s Lemma and in Ex. 47, “every
chain’’ can be replaced by ‘“every well-ordered chain’’.

Let ¢ be a mapping of A onto B; then there exists a mapping  of B into 4
such that b=byy for every b e B.

Prove that the statement of Ex. 61 is equivalent to the Axiom of Choice.
Prove that Ex. 61 characterizes the onto mappings.

Let ¢ be a mapping of 4 into B, and A# @. Then ¢ is 1-1 if and only if
there exists a mapping ¢ of B into 4 with agpy=a for all a € 4.

An element @€ M(A) is called a right-annihilator if Yp=¢ for all
€ M(A). Describe all the right-annihilators of M(A4). Are there any
left-annihilators ?

Describe the join of equivalence relations in terms of partitions.

(B. Jonsson) Let L= E(A) with the property that if ¢, and & € L then
eoVeyand gg A ey € L. Then Q=(L; <) is alattice. Assume that for all ¢,
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e; € L we have that ey V e; = ege, 9. Prove that & is modular, that is o= eg
implies eg A (&1 V e3) = (g9 A &1) V & for all e, &, e € L.
In any semilattice #;<y,, t=0, 1,-- ., n—1 imply

V@losi<nsVw|osi<n,
Which of the following lattices are algebraic ?

(i) <P(4); U, N);
(ii) <Part(A4); v, AD;
(iil) <[0, 1]; <>, where [0, 1] is the set of all reals (rationals) satisfying
0<z=1.

Let I and J be ideals of a distributive lattice. Prove that z € I vJ if and
only ifx=ivjforsomeselandjed.

Prove that if (L; v, A) is a lattice, then (a]Vv (b]=(a Vv b] and (a] A (b]=
(a AD].

Let =<(L; v, A) be a distributive lattice. Then <{I(8); <) is also
distributive.

Let Fo=<Fo; =) and F;=<F,;; <> be semilattices with 0. Prove that
(F¢; =) is isomorphic to {F,; <) if and only if <I({,); <) is isomorphic
to <I(F1); <.

An element p in a lattice with 1 is called a dual atom if p<1land p<x =1
imply that x=1. Prove that if the lattice is distributive then (p] is a
prime ideal, whenever p is a dual atom.

Let H be an infinite set and let I be the system of finite subsets of H. Then
I is an ideal in (P(H); U, N). Let P be a prime ideal containing I. Prove
that P is not a principal ideal generated by a dual atom.

Let (B; V, A,’, 0,1 be a Boolean algebra. Every ideal of {(B; v, A)>
is principal if and only if every prime ideal of (B; v, A ) is principal, which
is equivalent to B being finite.

P is a prime ideal if and only if L — P is a dual prime ideal.

Let (L; =) be a complete lattice. Then there exists a set A and a closure
system &/ of subsets of 4 such that (L; <) is isomorphic to {&; <).
Let X — X be a mapping of P(4) into itself such that

(i) XeX;
(ii) if X< Y, then X< Y;
(iii) X=X.

Let M:{)—(I X c A}. Then &/ is a closure system, and X =[X].

For a Boolean algebra B=<B; v, A,’, 0, 1>, the lattice (B; v, A) is
algebraic if and only if B is isomorphic to some R(I).

Let  =<L; <) be a complete lattice and H< L, H# @. (H; <) is called
a complete sublattice of & if for every K< H, lu.b.(K)eH and
g.l.b. (K) € H. Prove that a complete sublattice of an algebraic lattice is
always an algebraic lattice.

Every well-ordered set with a largest element is an algebraic lattice.
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(G. Gritzer [8]) Let & be a complete lattice and let m be a regular cardinal.
acL is called m-compact if a=< \/ (z I 1€l) implies that a=<
V (z | 1 € I’) for some I’ €I with |I'| <m. & is called m-algebraic if every
element is the join of m-compact elements. Find the analogue of Theorem
6.5 for m-algebraic lattices.

Let =<(L; v, A) be a distributive lattice with 1. An ideal I of g is
maximal (I # L and if I<J # L, then I=J) if and only if for a € L, the
condition that avb#1 for all b € I, implies that a € 1.

The condition of Ex. 83 characterizes prime ideals of Boolean algebras.



CHAPTER 1
SUBALGEBRAS AND HOMOMORPHISMS

The basic results on subalgebras and homomorphisms are presented in
this chapter. Many of these results belong to the ““folklore” of the theory,
and therefore some results are given without references. The systematic
treatment of polynomial symbols, which will be continued in Chapter 2,
turns out to be one of the most useful topics of this chapter and, sur-
prisingly, one of the topics most neglected in the literature.

§7. BASIC CONCEPTS

The concept of an algebra {4; F) as introduced is quite adequate in
dealing with such problems as the structure of subalgebras (§9) or endo-
morphisms (§12). However, to introduce the concept of a similarity class
of algebras one has to consider F as a family of operations with a fixed
index set. For the sake of convenience we choose this index set to be a set
of ordinals, but this is not very important.

Remark. Sometimes we will say, let (4; F) be an algebra, where F is
a family of operations on 4, and we will not well order F. This always will
mean that the well ordering of F' does not matter. We can always do this if
we consider only a single algebra, or if, for some other reason, we already
have names for the operations.

A type of algebras  is a sequence (ny, 0y, -+, n,, - - -> of nonnegative
integers, y <o(r), where o(r) is an ordinal, called the order of . For every
y <o(r) we have a symbol f, of an n,-ary operation.

An algebra A={A; F) of type  is a pair, where 4 is a nonvoid set (the
base set of A), and for every y < o(r), we realize f, as an n,-ary operation on
4: (fr)% and F=<(f0)M7 (fl)su, ) (f’/)M) ot >

(£,)u is the realization of f, and if there is no danger of confusion, we will
write f, for (f,)u and F={fo,---,f,,--+>. Thus if %A and B are both
algebras of the same type 7, f, will denote an operation on 4 as well as
on B. In general there is no danger of confusion since, if we write
f@g, -+, @y, 1), o, - -+, @, _; € A, then f, obviously means an operation
on 4.

Let us remark that this usage is generally accepted in algebra, e.g.,
+ is used to denote an operation in every abelian group.

33
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If F={fo, -, fa-1> we will write (4; fo, -, fo_1> for <4; F>.

The class of all algebras of type = will be denoted by K(r); it will be
called a similarity class of algebras (also called a species of algebras).

Let %A, B € K(7). A mapping ¢: 4 — B is called an isomorphism between
the algebras % and B if it is 1-1, onto, and for every y <o(r), @o, -  + @, _;
€ A we have -

fy(ao’ Tt a’ny—l)?’ = f-/(“o% ) an,—l‘P)'

If there is an isomorphism between % and B, then %A and B are called
tsomorphic. If A and B are algebras, we write A~ B for “A and B are
isomorphic”’.

The purpose of the theory of universal algebras is to find and examine
those properties of universal algebras which are invariant under isomor-
phism. Therefore, in general, we will not distinguish between isomorphic
algebras (one notable exception is, if they are both subalgebras of the same
algebra, see below).

Being of the same type means very little. If, unlike in §3, we define a
ring as (R; +, - ), then rings and lattices are of type (2, 2>. However, to
develop algebraic constructions (Chapters 1 and 3), it is enough in most
cases to assume that the algebras belong to the same similarity class.

An algebra U is called unary if it is of type {1,1,---,1,-.->.

Next we define the three most important algebraic concepts; namely
those of subalgebra, homomorphism, and congruence.

Let A be an algebra of type = and B a nonvoid subset of 4. 8=(B; F)
is called a subalgebra of A (and A an extension of B) if and only if

bo, - -+, b,,_, € B implies that (f,)u(bo, - - -, by, -1) =
(fy)ﬁ(bo" ] bn,—l)e B
for all y <o(7), that is, if and only if B is closed under all the operations
of % and (f,)g is the restriction of (f,)y to B (or more precisely, to B™).
If % is an algebra, B€ A, B# &, and for all y<o(7), by, - - -, b,,-1 € B,
Jy(bos -+, by, 1) € B, then there is exactly one subalgebra of % on the
base set B. Thus if we write “so (B; F) is a subalgebra” or ‘“let (B; F)

be a subalgebra”, this always means that B has the property described
above.

Lemma 1. Let (B;; F), i € I be subalgebras of A, B= (" (B;|ieI). If
B# @, then (B; F) is a subalgebra of U.

Proof. Let by, --,b,,_, € B. Thenb,,---,b, _, € B;and so

fy(bo’ Ty bny—l) € Bb
for all ¢ € I. Thus f, (b, - - -, b,,-1) € B.
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Lemma 1 implies that if % is an algebra, H= A4, H# &, then there is a
smallest subset B containing H such that (B; F) is a subalgebra. We will
denote this B by [H] and {[H]; F) will be called the subalgebra generated
by H and H is a generating set of {[H]; F).

We extend the notation [H] to the void set:

[2]= o if there are no nullary operations;

[2]is the subalgebra generated by the values of nullary operations, if
there are nullary operations.

(4; F) is finitely generated if A =[H] for some finite H< A.

Note that if (G-, 1) is a group, then (H; -, 1) is a subalgebra if and only
if 1eH, H is closed under multiplication, and the multiplication of
elements of H is the same in (H; -, 1> and {G; -, 1> (which does not mean
that (H;-, 1) is a subgroup).

Let us also note that the elements picked out by the nullary operations
are contained in every subalgebra of the given algebra.

Let A and B be two algebras belonging to the same similarity class
K(7). A mapping ¢: A — B such that

fr(aO’ ) an,—l)q’ =f7((1092. ) a’ny—l(P)

for all y <o(7) is called a homomorphism of % into B.

Let us note that if a nullary operation f, picks out @ from % and b from
B, then ap=>, more precisely, ((f,)n)p=(f,)s.

We will call the homomorphism 1-1 (onto) if the mapping ¢ is 1-1
(onto). 1-1 homomorphisms are also called embeddings. If ¢ is 1-1 and
onto, it is thus an isomorphism. If ¢ is onto, then B is called a homo-
morphic image of A. Some authors use special names for 1-1 and onto
homomorphisms. 1-1 homomorphisms are called ¢njections and mono-
morphisms, onto homomorphisms are called surjections and epimorphisms.
Isomorphisms are also called bijections.

Let %A be an algebra and ©® a binary relation defined on A. 0 is called
a congruence relation if it is an equivalence relation satisfying the substi-
tution property (SP):

(SP) If y<o(r), a;=by(®), a;, b, € 4, 0=i<n,, then
f‘y(ao’ ) an,—l)Efy(bO: ) bn,-l)(G)-

If we are given an algebra % and a congruence relation © on U, we can
construct a new algebra called the quotient algebra as follows: the new
algebra is defined on the quotient set

A4/0 = {[a]®O|a € 4}
(for the notation, see §2), with operations defined as

fy([aO]G’ R [an,-l]e) = [fy(a’Oa A any-l)]G‘
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The new algebra is denoted by
AO = (4/0; F).

Since the operations are defined in terms of the representatives a,, - - -,
a,,_, of the equivalence classes, we have to prove that the operations are
well defined, that is, the result of the operation does not depend on the
representatives chosen. Indeed, if b, -, b,,_; is another set of rep-
resentatives, that is, if

a, = b(0), 0=s1¢<n,
then, by (SP),

fy(a’O! ] an,—l) = fy(bo: ] bn,—l)(G))y
and thus,

[fy(ao’ Tt any—l)]® = [fy(bOv S} bn,—l)]®»

which was to be proved.
Now consider the mapping

po: @ — [a]O,

which is the natural mapping of 4 onto the quotient set A/© (see §2).

Lemma 2. ¢g ts a homomorphism of A onto A/ O.

That is, every quotient algebra is a homomorphic image of the algebra.
Proof. Letay,---,a,,_,€ 4. Then

fy(ao: Tty an,—l)q’@ = [fy(a'oy A an,—l)]G)
= fy([ao](')’ ) [any—lle)
= fy(@ope; - -+, a’n,—l?’@);
which was to be proved.

In conclusion, we state four other elementary facts.

Lemma 3. Suppose ¢: A — B is a homomorphism of U into B. Then
{Ae; F) is a subalgebra of B.

Proof. Let by, -, b, _, be elements in Ap. Then there exist a,, - - -,
@,, -1 € A such that b;=a,p, 0 <7 <n,. Since

fy(bo’ Tt bn,—l) =f7(aoq” R any—l‘P) =f7(a’0’ ) au,—l)‘PEA‘P’

we see that Ag is closed under the operations.
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Lemma 4. Let U be an algebra and B a subalgebra of A. Let O be a
congruence relation of A and @ a homomorphism of N into €. Then Oy, that
18, the restriction of © to B, is a congruence relation of B and g, that is, the
restriction of @ to B, is a homomorphism of B into €.

Lemma 5. Let A, B and € be algebras, ¢ a homomorphism of A into B,
and  a homomorphism of B into €. Then gy is a homomorphism of A into €.

Lemma 6. Let ¢ be a homomorphism of W into B. Then e, the equivalence
relation on A induced by ¢, is a congruence relation of A.

The proofs of Lemmas 4-6 are left to the reader.

§8 POLYNOMIAL SYMBOLS AND POLYNOMIAL ALGEBRAS

Definition 1. Let U be an algebra; the n-ary polynomials of U are certain
mappings from A™ into A, defined as follows:

(i) The projections (see §2) e," are n-ary polynomials (0 <1< n);
(i) If po,- - -, Pn,-1 are n-ary polynomials, then so isf,(Po, - - -, Pn,-1),
defined by

fy(Po’ o '>pn7—1)(xo’ Cey Zyy)
= fy(Po(xo’ R xn-l)» o "pn,-1(xo’ ) xn—l));

(iii) n-ary polynomials are those and only those which we get from (i) and
(ii) 7n a finite number of steps.

Since the n-ary polynomials of (A4; F) are functions, their equality is
defined as the equality of functions.

Note that in (ii) »,=0 is not excluded. Therefore every nullary operation
is an n-ary polynomial, for every n. Moreover, n=0 is also allowed, in
which case there is no ¢;", and therefore we get nullary polynomials if and
only if there is at least one nullary operation.

Examples: Let (L; v, A) be a lattice; then examples of unary poly-
nomials are ey'(zy) = 2o, (€0 V €0')(Zo) =€ (%o) V €o1 (o) =2, and so on. It
is easy to see that there is only one unary polynomial. e ?(z,, z,)=2,,
(€12 V e2)(xg, ,) =12, V o, and so on, are examples of binary polynomials.

Let <R; +,-,0,1) be a ring with a unit element. It is easy to prove
that in this case every unary polynomial p is of the form

-1
P(To) = ng + 1Ty + NP+ - My 127

where the n; are elements of the form 1+1+ --- +1 or 0, and conversely.
Let {G;-> be a semigroup; then all unary polynomials are of the form
z,".
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Let %A be an algebra. Then P™(A) will denote the set of n-ary poly-
nomials. (ii) can be considered as a definition of the operations on the set
of n-ary polynomials; the resultant algebra B™(A)=P™(A); F) is the
algebra of n-ary polynomials. Note that P©() consists of the nullary
polynomials, that is, of those polynomials which we build up from the
nullary operations (if there are any); therefore (%) is defined only if
there are nullary operations.

Lemma 1. Let p € P™(A) and n>1. Then there exists a g € P™~D(A)
such that for all 2y, -+, 2,_,€ 4

P(Tg, s Tp_gy Tn_2) = ¢(Xo, -+, Tp_3)-

Proof. If p=e™ and ¢#n—1, then set

g =€
if t=n—1, then set

q=er’3.
If the statement has already been proved for p,, - - -, p,, -1, and the corre-
sponding polynomials are ¢y, - - -, ¢,, -1, then the polynomial

fy(po’ te 'apny—l)
will correspond to

fr((Io’ R} qny—1)~

Lemma 2. Let p € P™(A) and let o be a permutation of 0,---,n—1.
Define p°(xg, - -+, Ty _1)=DZo0> * * *» Tn—1y6). Then p° € P™(A).

Proof. (¢,")°=e} € P™(A). The induction step is the same as in
Lemma 1.

Corollary 1. Let ¢ be a mapping of {0,---,n—1} into {0,---, m—1},
n=m, and let p € P™(A). Then there exists a ¢ € P™(N) such that
P(Zoos* * +» x(n—l)w) = q(%g, "5 Tpp—1)-
Proof. By Lemmas 1 and 2.

Let p € P™(A). We say that p depends on z; if there exist aq, - - -, @, _;
and a;" € A such that

p(aoy"'aah""an—-l) #p(aoy"':a;:"‘yan—l)'

P™B () denotes those n-ary polynomials which depend on at most k
variables. The polynomials in P™ (%) are constant. If for a € A there
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exists a p e P™O(YA) such that a=p(zy, - -, 2,_,), then a is called a
constant of .

Lemma 3. If a is a constant of W, then there exists a p € PX-O(A) such
that a=p(x,).

Proof. Identify all variables and use Lemma 1, if a=p(xq, - - -, Z,_,)
with n 21, and recall that a nullary polynomial is also a unary polynomial.

Lemma 4. Let a be a constant of A. There exists a p € PO(A) such that
a=p, if and only if there is at least one nullary operation.

Proof. Trivial, by the definition of nullary polynomials.

Let 2 and B be algebras of type 7. If we consider the n-ary polynomials
over A and the n-ary polynomials over 8B, we observe that they are built
up the same way, and we use the same symbols in both cases. For instance,
fy(eo™ - - -, e) denotes an n-ary polynomial for % and also for 8. This is
similar to the situation, that f, denotes an operation on both, and suggests
that just as we have an operation symbol f,, it would be useful to have
polynomial symbols as well.

Definition 2. The n-ary polynomial symbols of type t are defined as
Sfollows:

(i) xg,* -+, X,_1 are n-ary polynomial symbols;

(i) of Pos- s Pn,-1 are m-ary polynomial symbols and y<o(r), then
£,(Po> - *» Pn,-1) 8 an n-ary polynomial symbol;

(iii) n-ary polynomial symbols are those and only those which we get from
(i) and (ii) ©n a finite number of steps.

Remark. If f, is the symbol of a nullary operation, then f, is an n-ary
polynomial symbol for any »n. Nullary polynomial symbols exist if and
only if there are nullary operation symbols. We consider polynomial
symbols as sequences of symbols; thus equality means formal equality.

Now we will show that a polynomial symbol is indeed a symbol for a
polynomial.

Definition 3. T'he n-ary polynomial p over the algebra A, associated with
(or induced by) the n-ary symbol p is defined as follows:

(1) x; induces e;*;
(i) of p=£,(po, - - -» Pn,-1) and p; induces p; for 0 <i<mn,, then p induces
f'/(p()’ T .pﬂy—l)'
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Corollary 1. Every n-ary polynomial p over U is induced by some n-ary
polynomial symbol p. ‘

If p is a polynomial symbol, (p)u or p% will denote the polynomial of %
induced by p.

Corollary 2. For every m-ary polynomial p over A and for m>n, there
exists an m-ary polynomial q over A such that

p(a0> Tt a’n—l) = Q(ao, Tty am—l)

for every ag, - -+, a,_, € A.

Proof. By Definition 2, if n < m, then every n-ary polynomial symbol is
also an m-ary polynomial symbol. Thus Corollary 2 is trivial from
Corollary 1.

Let A be an algebra and a € A. Then a is called an algebraic constant if
a=(p)u for some nullary polynomial symbol p.

Corollary 3. Let % be an algebra and a € A. If a is an algebraic constant,
then a ts a constant tn A. Conversely, if a is a constant in A and there are
nullary operations, then a is an algebraic constant.

Proof. By Corollary 1 and by Lemma 4.

Corollary 1 suggests a natural way of defining the equality of poly-
nomial symbols: we want two polynomial symbols to be equal if in any
algebra of K(r) they induce the same polynomial. We will prove that
formal equality is, in fact, equivalent to this condition. To this end, we
construct the n-ary polynomial algebra P™(7)={P™(71); F) as follows:

P™(7) is the set of all n-ary polynomial symbols; the operations on
P™(71) are defined by

fV(PO" ) Pny—l) = fy(PO’ T Pn,—l)'
Then B™(7) € K(7).

Remark. We will prove propositions concerning polynomial symbols in
the same way that we did for polynomials, using the following scheme:

(i) The statement is true for x;;
(ii) if it is true for po, - - -, Py, then it is true for

fy(P0> ] Pny—l)'

This scheme is simply proof by induction on the “rank” of a poly-
nomial symbol. Rank can be defined in any way, only it has to be a positive
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integer, and the rank of f,(p, - - -, Pn,-1) must be greater than the rank of
any p,. For instance, we can define the rank of p as the number of symbols
which occur in p; thus; the rank of x, is 2 and the rank of f5(x,, f;(x,)) is 13.

Lemma 5. Let p be an n-ary polynomial symbol and p the polynomial of
B™(r) associated with p. Then

P(Xo,**+, Xp1) = P.
Proof. (i) If p=x;, then

e"(Xg, " +5 Xp_1) = X
(ii) if the statement is true for po,- - -, p,,-1 and p=£,(po, - - -, Pn,-1)s
then
P(Xo, Tty xn—l) = fy(pO(XO’ ) xn—l)’ ) _pn,-l(xm tt xn-l))
= fy(Pm Tty Pn,—l) = fy(PO: s Pn,-l) =P
This completes the proof of Lemma 5.

Theorem 1. Let p, q € P™(7). If p and q tnduce equal polynomials in
every algebra of type r, then p=q.

Proof. Let p and g be the polynomials associated with p and q,
respectively, in the algebra R™(7). By assumption, p(ag, - -, @,_1)=
g(ag, - -+, ay-y) for any ay,- - -, a,_; € P™(7). Put a,=x,. Then applying
Lemma 5 twice:

P= P(xo: cre, Xp_g) = q(xg, - -+, xn—l) =9q,

which was to be proved.

In most applications it is useful to consider «-ary polynomial symbols
where o is an arbitrary ordinal. It is easy to modify Definitions 1-3;
we only have to replace the ey, - - -, eZ_; by

eOa"";eéa"",8<a

in Definitions 1 and 3, and in Definition 2 we have to replace xo, - - -, x
by %o, -, X,, - - - for y<e.
The corresponding algebras will be denoted by

PO(1) = PO(7); F) and P(A), respectively.

n-1

Lemma 5'. Lemma 5 holds for «-ary polynomial symbols for arbitrary e.

Theorem 1'. Theorem 1 holds for a-ary polynomial symbols for arbitrary .
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Let A e K(7), and a={ay, +, 8y, **Dy<q Where a,€ 4 for y<a. If
p € P@(7), we will sometimes denote p(ao, - - -, a,, - - -) by p(@).

Theorem 2. We define a binary relation ©, on P® (1) as follows:

= q(0,)
of and only if
p(ao’. Cey @y, ) = q(ao’ SR )
Then @, s a congruence relation of R(7).
Proof. That ©, is an equivalence relation follows simply from the fact
that “="" on 4 is an equivalence relation.
To prove the substitution property, let p;=q,(®;), 0<¢<n,, and con-
sider p=1£,(po, - * -, Pn,-1)s 4=1,(qo, - *» €, -1)-
Then
(@, - - Ty Ay, ") =fv(p0(a0’ T gyt )y "pny—l(a’o’ ceey gt t)
=fr(q0(a0’ gyttt )y "Qny—l(ao’ BRI T )
= Q(ao:' Cs gy vt ):
thus p=q(0,), that is,

fy(Po’ B Pny—l) = fv(qos Tt ‘In,—1)(®a)’
which was to be proved.

Corollary. The mapping
P: [p(XO’ Crty Xy, o ')]®a—>P(“o, crty By, e ')
ts a 1-1 homomorphism of B@(7)[O, into A and [x,]0, — a, under this
mapping.

Another interesting congruence relation is defined on $®(7) as follows:
Let K< K(r); let p=q(®f) if and only if p(ag, - -, a, )=
g(ag, - - -, ay, - - -) holds for any ay, - - -, a,,--- € 4, A e K.

Theorem 3. Oy is a congruence relation of R (7).

Proof. Similar to that of Theorem 2.

Let us note that Theorem 1’ states that Ok, =w. If K={%}, let us
write Oy for O.

Corollary. R®(7)/ Oy is isomorphic to B@(A). An isomorphism is given
by
¢: [p]Ox — p,
where p is the polynomial over A induced by p.
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Proof. i is onto by Corollary 1 to Definition 3. That i is well defined and
1-1 follows from the fact that [p] @y =[q] @y means that p and q induce the

same mapping in 4. Since ¢ obviously preserves the operations, the proof
is complete.

As suggested by this corollary, we will use the notation R@(K) for
PO(r)] O.

In the next lemma, we will show that every «-ary polynomial depends
on only a finite number of its variables, and, conversely, every n-ary
polynomial can be enlarged to an «a-ary polynomial.

Lemma 6. Let p be an o-ary polynomial symbol; then for some n<w
there exists an n-ary polynomial symbol p' and vyo, -+, y,_1 with
0= yo< - <yn-1<asuch that for every algebra W € K(r), if p and p’ de-
note the polynomials over A induced by p and p’, respectively, then

p(ao, Cey Oy, ) — p’(ayo’ o .’ayn_l)
forall ag,---,a,, - €A.
Conversely, if p’ is an n-ary polynomial symbol and n < w and the ordinals
Yor s Yn—1 With 0Syo<y <+ <y,_;<a are fived, then there exists an

a-ary polynomial symbol p such that for the induced polynomials the above
equality holds.

Proof. The first statement can be proved by the usual inductive
argument. The second statement can be proved as Corollary 2 to
Definition 3 was.

This lemma shows that the equality of the «-ary polynomial symbols p
and q, both of which are associated with the same sequence, yq, - - -, yn_1,
and with the n-ary polynomial symbols p’, q’, is equivalent to the equality
of p’ and q'. This establishes the following result:

Theorem 4. Let P®(y,, - - -, y,_,) denote those a-ary polynomial symbols
which are built up from

Xyor " Xypy

where
O0Syo<:++ <yp-1<o.

Then <Py, -« -, yn_1); F> is a subalgebra of B@(7) and
CPO(yo, -+ vy yn-a); F) = BW(7).

These results show that, in fact, w-ary polynomials are simply a common
notation for all n-ary polynomials.
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At this point we agree, if there is no danger of confusion, that if
peP™(r) and AeK(7), ap,---,a,_;€ 4, then in the expression
p(@g, -+, a,-1), p denotes the polynomial over A induced by p (and
e, denotes the polynomial induced by x; € P™(7)).

The next three lemmas show that from the point of view of congruence
relations, homomorphisms, and subalgebras, polynomials behave the same
way as operations.

Lemma 7. Let U be an algebra and © be a congruence relation on N. Let
p be an n-ary polynomial symbol. Then a,=b,(0) for 0 <i<n implies that

P(ao, ) a’n-l) = P(bo’ ) bn-l)(®)'
Proof. First step. Proof for p=x,.

P(ao: ) an—l) = e"‘(ao, Y an-l) = a;,
and
P(bo» ) bn—l) = e,"(bo, A bn-l) = bt-

Indeed, a,=b,(0).
Second step. Suppose the statement has been proved for the poly-
nomial symbols py, - - -, ps, -1 and that

P= fy(PO: trty Pn,-l)'
Then py(@g, -+, @p_1)=Dy(by, - - -, by -1 )(®), for 0 <7 < n,. Indeed,

Plag, -+, An_1) =fr(p0(a0» Cry @), ',Pn,—1(ao> crry Qnoy))
= fy(l’o(bo: ] bn—-:l)» v "Pn,—1(bo> ] bn—l))
= p(bo, -+, bp-1),

which was to be proved.

We have a similar statement for homomorphisms:

Lemma 8. Let U and B be algebras and let o: A — B be a homomorphism
of W into B; let p e P™(7). Then

Z’(ao’ Cey Gy oa)p = P(Bop, -, a’n—l‘P)-

Lemma 9. Let U be an algebra and B a subalgebra of A. If p is an n-ary
polynomial over A and by, - - -, b,_, € B, then p(by,-- -, b,_1) € B.

The proofs of Lemmas 8 and 9 are left to the reader.

Let p be a mapping of A™ into 4 with the property that if a,=b,(®) for
0<t<mn, then p(ay,:--,a,_1)=pby, -+, b,_1)(0) for any congruence
relation @; such a function is said to have the substitution property (SP).
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Let p be an n-ary polynomial over % and let ug substitute fixed elements
of A for certain variables. If & variables have been substituted, then p
induces a mapping of A"~* into 4, that is, it induces a function of n—k
variables; such functions are called algebraic functions.

It is easy to see that Lemma 7 holds for algebraic functions as well. Let
us adjoin to F every element of 4 as a nullary operation. It is obvious that
in the algebra (4; F U 4) the function constructed above is an n-ary
polynomial over {4; F U A4).

In many investigations (see e.g., the entire Chapter 5) it is irrelevant
what are the basic operations F of the algebra A={4; F); we are only
interested in the polynomials over 9. In such cases we are only interested
in algebras up to equivalence in the following sense:

The algebras A,={4; Foy and A, ={4; F,) are equivalent, if for
n=1,2,... we have P™(A,)=P™(Y,).

The algebra A=<{A4; F) is called trivial if it is equivalent to {(4; & ).
This means that P™A)={e"|0<i<n} for all n=1,2,--- and
POA)=g.

In investigating algebras up to equivalence the most natural device to
use is P. Hall’s clones. The clone of the algebra % is a family of sets
(P™(A) | n=1,2,...) along with a “partial operation” which assigns to
an element p of P™(%), and = elements g, - - -, ¢, _, of P*(A) an element
P(go; * * *» gn-1) of P¥() defined by

'P(Qm ] Qn—l)(ao’ o ';ak—l)
= P(qo(@o, - * s @i—1)s** +5 Gn—1(@0s * - 5 Bg—1))-

The most elegant treatment of clones is given by F. W. Lawvere [1],
[2] and J. Benabou [1] using categories (including an application of clones
to the characterization problem of equational classes as categories). See
also Ja. V. Hion [1].

§9. STRUCTURE OF SUBALGEBRAS

We will now establish some of the most important properties of
subalgebras. '

Lemma 1. If there is at least one nullary operation symbol f,, y <o(r),
then every algebra U of type 7 has a smallest subalgebra B and b € B if and
only if b s an algebraic constant.

Proof. This follows from the fact that if py, - - -, p,, -, are nullary poly-
nomial symbols, then so is fy(p, - - -, p,, 1) for all 8 <o(r).

For an algebra A =<4; F), let #(A) denote the system of subsets B of
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A of the form [H] for some HS 4. (W) will be called the subalgebra
system of A since if B € £ (A) and B# &, then (B; F) is a subalgebra of .

Lemma 2. #(¥) is a closure system.

Proof. By Lemma 7.1 a nonvoid intersection of elements of (%) always
belongs to # (). If the intersection (N (B;|i € I)is @, then either B;= &
for some i € I, and thus the intersection belongs to #(), or B;# @ for all
t € I, in which case there are no nullary operations, hence [ @ ]= @ € £ (),
by the convention adopted in §7.

Thus by the comments at the end of §6 we get from () a principle of
induction, and a concept of independence. These will be called #-induction
and &-independence, and a set X <= A4 will be called & -independent, and
SF-dependent, as the case may be.

Lemma 3. Let U be an algebra and H< A.

(i) If H={ho, - - -, by_1}, n<w, then a € [H] if and only if there exists an
n-ary polynomial p over A such that

a = P(hm tt hn—l)'
(ii) In general, a € [H] if and only if there exist an n<w, an n-ary poly-
nomial p over A, and hy, - - -, b, _, € H such that a=p(hgy, - - -, by, _,).

Proof. If H= @, then (i) follows from Lemma 2 and the definition of
[@]. It is now obvious from Lemma 8.6 that (i) and (ii) follow from the
following proposition:

(*) If H# o and H={a,|y <o}, where o is an ordinal, then a € [H] if
and only if there exists an «-ary polynomial p over U such that

a = p(ao’ N ay, - )
To prove (*), set

K = {a|a = p(ag,- -, a,,---) for some pe POA)}.

By Lemmas 8.6 and 8.9, K <[H]. K is closed under the operations since if
bo, -+, by, -1 € K, then

b, = piag, -+, ay,---), for 051 <,
and so with p=f,(po, - -, Pn,-1), we have that

fy(b07 .. "bny—l) = p(ao,. Cey By, ) cK.
Furthermore, H < K, since

@y = €,%(@g, "+ 5 By, v ).
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Thus K € (), H< K, and K <[H], which imply K =[H]. This completes
the proof of Lemma 3.

Corollary 1. |[H]| < (|H|+0(7))X,.

Proof. If |[H|=0(r)=0, then the statement is trivial. If this is not the
case, then every a € [H] can be associated with a finite sequence of ele-
ments of H and with a polynomial symbol, which can be regarded as a
finite sequence of symbols from the set {x, |7 < w} U {f, | y <o(7)}, which is

of power R, +o(7). There are at most (|H|+ X,+0(7))- X, such sequences.
Thus

I(H]| £ (lHl'*'xo'*'-O—(:))xo = (|H|+5(_"'5)xo~

Corollary 2. Let o(7) <X, Then
[(H]| £ |H|+R,.

Lemma 4. Let U be an algebra and let
# = {B/|iel},
where each {B,; F) is a subalgebra of N. If % is directed, then
U (Bi|iel); F)
is a subalgebra of (A; F).

Proof. Set B=| (B,|ie ). Let ag, - -, a, _, € B. Then

a,€ B; for some j,el.

Let B denote a common upper bound for B, ,- - -, B that is,

’ fny—l’

B> B,, -, B, and Be 4.

ny-1

Such a B exists because # is directed.
Then ay, - -, a,, -, € Be % and so f,(a, - - -, @,,-;) € BS B, which was
to be proved.

Corollary. For every algebra W, S (A) is closed under directed unions.

The previous statements can be summarized as follows.

Theorem 1. Let U be an algebra. Then S (A) is an algebraic closure
system.
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This was proved in G. Birkhoff and O. Frink [1], in which it was also
proved that the following converse of Theorem 1 holds.

Theorem 2. Let & be an algebraic closure system over A. Then we can
define an algebra N=_,4; F) such that L (A)= <.

Proof. We wish to define operations on 4.

(i) For every a €[ @] define a nullary operation f, whose value is a.
(ii) Let O<n<w, a=<{ag,  +,a,_,> € A" and a €[{ag, - -, a,_1}]; We
define an n-ary operation f,? by the rule:

if (by,---, b = a1,
fal(bos -y by_q) = {Z, if <b,, . -1y = {Q, Up_1D
o otherwise.

Let F denote the collection of all operations defined in (i) and (ii). We
claim that #(A)=, where A={4; F).

Let Be &. If B= @, then under (i) no nullary operation was defined;
thus Be £ (). If B# @, then [ @]»< B; therefore B is closed under all
nullary operations (if any). Let fe F be an n-ary operation, 0 <n<w,
bo,- -+, b,_1€B, b=f(bg,*-+,b,_,). Then f=f2 for some aec 4™ If
{bg, -+, by_1>#@a, then b=b, € B. If <b, - - -, b, _,>=a, then

{a’O""ra’n-l} = B,
hence
b = ae[{“o” * 'aan—l}]y’ g [B]Y = B-

Thus B is closed under all the operations, and so B € & (¥).
Conversely, let B € £ (N). If B= @, then there are no nullary operations
in A, which by rule (i) means that [ 5 ]»= @, and so B € &.
Let us assume that B# @ . Let H< B, where H is finite
H = {a0> ) a’n—l}'
First we verify that [H]y< B. Let a €[H]gy, and G=<aq, - -, @p_1)-
Then

a = faa(am ) an—l) € B.
Thus [H]#s < B.
Now we form the family

o = {{H)y | H = B and H finite}.

Note that &< & and & is directed. Since & is an algebraic closure
system we get that

B=JX|XeHAed
completing the proof of Theorem 2.



§9. STRUCTURE OF SUBALGEBRAS 49

The concept of subalgebra is invariant under equivalence of algebras;
however, the closure system (%) and #-independence are not invariant.
For instance, the group @ =<{G; -, ~1, 1) is equivalent to {G; -, ~*>=@,,
but £(®)# L (G,), since g ¢ (), but @ € F(,). Also, {1} is &-
dependent in @ but &-independent in &,.

This situation can be rectified by introducing the closure system
FLH(NA):

For Bc A, B# @, Be £*(%) if and only if (B; F) is a subalgebra of
A @ € L+ (YA) if and only if there is no element of A4 which is constant
in A.

Theorems 1 and 2 can be proved with & * (%) in place of S (A). The
construction of Theorem 2 can still be used; however, one has to verify
that if @ € %, then there is no constant polynomial in P®(%). The
details are left to the reader.

& +-independence, defined in terms of &+ (), will be used in Chapter 5.
Note that & *-independence implies .#-independence and #-dependence
implies % *-dependence. Furthermore, if | X| > 1, then X is #-independent
if and only if X is & *-independent.

If o(r) £R,, then by Corollary 2 to Lemma 3, &(2) has the following
property:

(*) If H < A, then |[H]| £ |H|+R,.

Theorem 3. Let &/ be a closure system with property (*). Then every
B e o/ with |B| >R, can be represented as

B-U(X|Xc¥),

where € is a well-ordered chain in <, and for every D €€, |D|<|B|.
Proof. Let o be the initial ordinal of power |B|. Then B={b,|y<a}.
Set B,={b;| 8 <y} for all y<c. Since y<4g, |B,|<|B|. Now set C,=[B,]

for y<a and €={C,|y<a}. Then € is a well-ordered chain of sets and
obviously | ) (X | X € ¥)= B. Furthermore, by (*),

|07| = IBV|+NO <a+R, = |B|’
which completes the proof of Theorem 3.
Corollary. Let U be an algebra of type r and o(r) < V,. If |A| >R, then

U is the unton of a well-ordered chain of subalgebras, each of which is of
cardinality < |A|.

For an interesting application, see Exercise 44.
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§10. STRUCTURE OF CONGRUENCE RELATIONS

In the following lemmas we will establish some of the most important
properties of congruence relations.

Lemma 1. Let O,, ¢ € I, be congruence relations of the algebra A. Then
M (0,3 € I) is also a congruence relation.

Proof. Recall that () (®,|4 € I) stands for the set-theoretical inter-
section and that in §56 we proved that this intersection is again an equiva-
lence relation. So all we have to prove is that it satisfies the substitution
property. To this end, let a;=b,((") (0] € I)), 0=<j<n,. Then a,;,=b,(0,)
holds for all 1€ and so fy(a, -, @y, -1)=fy(bo," -+, by,-1)(O,) for all
1 € I which means that

f-/(%> te "a'n,,—l) —__"fy(bm' ] bny—l)(m (G)i | 1’6])),

which was to be proved.

Lemma 2. Let O,, ¢ € I, be congruence relations of the algebra . Then
V (0, |1 € 1) is again a congruence relation.

Proof. Recall that \/ (®,|i€I) stands for the join of the O, as
equivalence relations and thus Lemma 2 states that if we take the join of
equivalence relations which are congruence relations, then the join is
again a congruence relation. Again, we only have to prove that
V (0,] 7 € I) satisfies the substitution property.

Let a;=b,(\V (0,]|¢€el)),j=0,---,n,—1. Then there exists a sequence

a;=2z¢, 27, -, zi,,:b, for every j such that for every ¢ with 0<i<n;
we have z/=2{,,(0®/) for some O/ e {0,;|iel}, j=0,---, n,—1. We say
that these sequences are uniform if no=n,= .. =n, _;=nand 0 = 0]

for every 0<j,j'<n,—1 and 0<i<n. We will prove that we can choose
the sequences such that they are uniform.

Assume that we have j sequences and we will use induction on j. If
j=1, we have nothing to prove. If the first j sequences are already
uniform, then extend them by adding at the end of each its last term
n;-times and extend the sequences of congruences by ©y,---, 0} _,,
and extend the j-th sequence of elements by adding n-times (where n
stands for the number no=n,= - .. =n,_,) the first term at the beginning
of this sequence and by adding ®,,---, ®,_; at the beginning of the
sequence of congruences, where ©; stands for @;% for any k<j—1. It is
obvious that this makes the first j sequences uniform.

For example, if we have the two sequences a,, z;, b; and a,, 21, 23, b,,
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where the corresponding sequences of congruences are ©,!, ®,' and
0,2, 0,2, 0,2, then the uniform sequences are a,, 2, by, by, by, b, and
@g, Ao, Gg, 21, 25, by and the associated sequence of congruences is ©,2,
0%, 0,7, 0,% 04°.

So we can assume that the sequences are uniform. Let n denote the
common length of these sequences and ®,, - - -, ®, _; the common associa-
ted sequence of congruences. To verify that

fv(am Tty a/n.,—l) = f‘r(b07 Tty bny—l)( V (G)il’l‘e-[)):

we construct the sequence:

f‘y(zooa Tty 287_1) = f'y(ao’ ) any—l):
f'y(zlos T zily_l)a
f‘y(zg—l’ Ty 22"—_11),

f‘r(zno: Ty 227'1) = fy(bo’ Ct bny—l)'
Since z/'=2},,(0,), we have that
fv(“m ] a/n.,—l) = f'y(bm R} bn.,—l)( V (®l | tE I))
For an algebra U, let C(A) denote the set of all congruence relations of

A, and let €(A) denote <C(A); <. E(A) is called the congruence lattice
of A.

Corollary 1. () s a lattice.

Corollary 2. (%) is a complete sublattice of E(A), the lattice of all
equivalence relations on 4.

Corollary 3 (G. Birkhoff [2]). €(¥) is a complete lattice.

Lemma 3. Let (0, i€ I) be a directed family of congruences. Then
U@, |iel)=V (0, ]|iel).

Note that for intersection we always have
N(O; | iel)= A(0,| 1€

Proof. It is trivial that | J (0|t e I)cV/ (0©,|i€l).
To prove that | J (0;|ie )2V (0,]i€ I), assume that

a=b\V(0,]|iel).
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Then there exists a sequence of elements of A, a=z,, 2,,---, 2,=b, and
congruences O, ,---, ®, _ (ji€l) such that

Z = 241(09,).
Since (®;|iel) is a directed family, it has an element © such that

020, for0sk<n.
Hence, z;, =2, ,(0) and so a=b(®) which implies that

a=bU (0 | iel).

Therefore,
V(O |iel) (o] iel),
which completes the proof.

Now we shall prove that the congruence relations of the algebra U form
an algebraic closure system over 4 x 4.

(i) The whole set 4 x A is in the system since : is a congruence relation
and =4 x 4.
(ii) This system is closed under arbitrary intersection according to
Lemma 1.
(iii) This system is also closed under directed union by Lemma 3.

Thus we have proved (G. Birkhoff and O. Frink [1]):

Theorem 1. C(A) is an algebraic closure system over 4 x A.

Theorem 1 combined with Theorem 6.5 yields the following result.
Theorem 2. C(YA) is an algebraic lattice.

Now, let o be an algebra and let H<= A x A, that is, H is a collection of
ordered pairs. Let @(H) be the smallest congruence relation ® such that
a=b(0) for all <a, b> € H. Obviously, ©(H) exists and

OH) = (O]a=b®) forall (a,b)e H).

If H={{a, b)}, then O({<a, b>}) will be denoted by ©(a, b), and ©(a, b)
is called the principal congruence relation induced by a=b (also called
“minimal ).

Let % be an algebra and a, b € A. We define a binary relation ® on 4
as follows:

x=y(0) if and only if there exists a sequence x=z2g, 2, -, 2, =¥y of
elements of A and an .associated sequence pg, Py, - -, P,-; of unary
algebraic functions such that

{2 2141} = {Pila), p(0)}, 4 = 0, - - -, n—1.
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At the end of §8 we noted that algebraic functions satisfy the substitu-
tion property. This implies that if ® is a congruence relation and a =b(®),
then z=z2,,(?) and so z=y(®). In particular, z=y(0(a, b)). Hence,
x=y(0®) implies x=y(O(a, b)). Thus, to prove that ® = O(a, b) it is enough
to verify that a=0b(®) and that © is a congruence relation. However,
a=5b(0) is trivial since we can choose the sequence @, b and the unary
algebraic function e,'. Now we prove that © is a congruence relation.

(i) O is reflexive, that is, c=c(®) for every ¢ € 4; indeed, choose the
sequence c, ¢ and a unary algebraic function which is identically ¢ (e.g.,
€o*(¢, 2,)).

(ii) O is symmetric; if x=y(®), then y=x(©). This can be established
by taking the reverse sequence.

(iii) © is transitive; if x=y(®) and y=2(0), then taking the composi-
tion of the two sequences establishing these congruences proves that
z=2(0).

(iv) O satisfies the substitution property: Let

Ay = bo(®)7 By g = bn,—l(e)'

Then we have sequences

— » 0 0 _
Ay = 29 )ttty Ry —bo:
— oM, =1 ny—1 —
any—l =20" Ty, Zn{n,—l) = bny—l

and the associated sequences of unary algebraic functions

0 0
Po: e "pno-—l)

PR pz(r"'yi 1-1-
We prove by induction on ¢ that

f‘/(ao’ Tt an,—l) Efy(bo’ ] bi—l»a’h ] aﬂy—l)(g)'

The statement is obvious for +=0. Let us assume that it holds for ¢
(<mn,). Since a;=b,(®), there are sequences

Ay =20,y 2, = by,
Po>* s Pm-1>
such that

{25 2541} = {Ps(a), ,(0)},j =0, -+, m—1.
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Then the sequences

to = f'y(bOa e by, 205 Ayy15 00 aﬂ,y“l)’

ty = fy(bos -+ b1, 21, @y, @, -1)s

tn = f'y(bo’ cee, b, Zmy Qyy1s° *» aﬂy—l)’
and

9o = fy(bo, -+, byi_1, Pos By, - - -, Qny-1)

Idm-1 = fy(bOa ) bl—l’pm-l’ (TS PR an,-l)
establish that

fv(bo, tt bt—l’ 27T an,—l) = fy(bO: tt bi—l: bb Ay, an,—l)(e)r
and by the transitivity of ©,

fr(ao’ B a‘n,—l) Efv(bo: Tt bi; (S PR a’n,—-l)(g)-

Now the substitution property follows by setting ¢=mn,.
Thus we have proved the characterization theorem of principal con-
gruence relations.

Theorem 3. x=y(0(a, b)) if and only if there exists an n < w, a sequence
x=2,2y, -, 2, =Yy of elements of A and a sequence Py, - -, P,_1 of unary
algebraic functions such that

{pi(a), p(0)} = {2 2141} t=0,1,---,n=1

Theorem 3 is implicit in Mal’cev [3].

Examples. (1) Let {(G; -, 1> be a group and © a congruence relation of
{G;-,1). Let N be the equivalence class containing 1. It is known that
there is a 1-1 correspondence between congruences ® and normal sub-
groups N. Thus a and b are congruent modulo O if and only if ah~ e N.
Let N(a, b) be the normal subgroup which corresponds to ®(a, b). Then
N(a, b) is the normal subgroup generated by ab~!. An n-ary polynomial
of a group is always equivalent to a polynomial of the form

e} - e ---e, where 0 <i; <n.
A unary algebraic function is thus of the form
€1 Xy Ca-Tg-C3- Lo+ -+ T Cy (€ € G)

which is obtained by fixing all the variables except one in a given
polynomial.

We will prove that in the case of groups the following simpler version of
the above theorem holds:

¢ = d(0O(a, b))
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if and only if there exists a unary algebraic function p such that p(a)=c
and p(b)=d.

Let u € G; then the normal subgroup generated by u consists of the
elements of the form

Zyuhal legutaxs - - ey L,
where the =, are integers and z; € G. Since N(a, b) is generated by ab~1,
and since cd~! € N(a, b), we get that cd~* can be expressed in the form
cd~! = zuM -tz t
or
¢ = xu™ -7 1,
where u=ab~!. Set
P(x) = xy(xb ™) ay twy(ab ™ ) ez, - - - @(wb ™)y 1.

Then p is a unary algebraic function and

p(a) = ¢,
p(b) = d,
which completes the proof of our assertion.

(2) Let (R; +,-,0)> be a ring. Every congruence relation is also a
congruence relation of the corresponding additive group (R; +, 0>. The
stronger version of the above theorem which was given in Example 1 can
also be proved in this case.

(3) Let <L; v, A) be a lattice. Then it is easy to give examples to
show that the theorem cannot be sharpened as in Examples 1 and 2. (See
Exercises.)

Now we can describe ©(H).

Lemma 4. O(H)=\/ (0(a, b) | {a,b> € H).
Proof. Trivial.

Lemma 4, combined with Theorem 3 and the description of the join of

equivalence relations given in §5, gives the following explicit description
of O(H).

Theorem 4. c=d(0O(H)) if and only if there exist n<w, a sequence
C=2g, 21, *+, 2n=0d and pairs of elements {a,, b;> € H and unary algebraic
functions py, t=1, - - -, n, such that

{pi(a), pi(b)} = {z-1, 2}, t=1---,m.

A useful formula is the following.

Lemma 5. 0= (O(a, b)|a=b(0)), forall ©eC().
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Proof. Let ©,=)J (O(a, b)|a=b(0)). If a=b(0), then O(a,b)< O;
hence, ©,<®.

On the other hand, if u=v(0), then O(u, v) = ©,; thus, u=v(0,),
i.e., ®< ©,, which was to be proved.

Lemma 6. A congruence relation © is compact in €(A) if and only if it
can be represented as a finite join of principal congruences, that is,

0 =V (0(a, )]0 < i < n).

Remark. Not every compact congruence relation is principal (see
Exercise 51).

Proof. The statement is a special case of Lemma 6.5. A direct proof is
the following.

First we prove that ®(a, ) is compact. Let O(a,b)< \ (0,]|ie ),
which means that
a = b\ (]l

This is equivalent to the existence of a sequence a =z, - - -, 2, =b such that

% = Z/+1(@‘,),
Jj=0,.---,n—-1,4,el.
Take I'={tq, - - -, t,—1}. Then
a=bV (&iel),
which means that O(a,b)< \/ (0,|iel’), verifying that O(a,b) is
compact.
We already know (proof of Theorem 6.3, step (i)) that a finite join of

compact elements is compact.
Thus,

V (O(ay, b)) IO Si<n)
is always compact.
To prove the converse, assume that ® is compact. Then, by Lemma 5,
0=\ (0(a, b)| a=b(0)); thus by the compactness
0 = 0O(ag, b)) V-V Oa,_y, b,-1),
which proves the statement.
Let K(A) denote the set of congruence relations of % of the form

V (O(ay, bi)IO S <)

where n < w.

Theorem 5 (J. Hashimoto [1]). K(N) =<K (A); Vv ) is a semilattice and the
lattice of all ideals of this semilattice is 1somorphic to €(A). In symbols:

J(R(A) = EA).
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Proof. By Theorem 6.5.

In Theorem 3, we described the smallest congruence relation under
which a=b. Now for a#b we will prove the existence of a maximal one
under which a#b.

Theorem 6. Let U be an algebra and a,be A,a#b. There exists a
congruence relation ¥(a, b) such that ab(¥(a, b)) and ¥(a, b) is mazximal
with respect to this property (i.e., if ¥(a, b) < O, then a=>5b(0)).

Proof. Let #={®|a#b(®)}. Note that & is not void since a#b
implies that w € 2.

Consider B={Z; <). Let C be a chain in . Then ¥'=\/ (¢ | D () is
a congruence relation. By Lemma 3,

V(@|0el) = (®|De0);

thus we have that x=y(¥) if and only if z=y(®) for some ® €. There-
fore, a £ b(¥) and so V' e Z.

Hence, the hypothesis of Zorn’s Lemma is satisfied; ¥ has a maximal
element ¥(a, b).

§11. THE HOMOMORPHISM THEOREM AND SOME
ISOMORPHISM THEOREMS

Theorem 1 (Homomorphism Theorem). Let %A and B be algebras, and
¢: A — B a homomorphism of % onto B. Let @ denote the congruence relation
induced by ¢ (that is, @ =e¢,). Then we have that N[O is isomorphic to B,
and an isomorphism is given by [a]® — ap (a € A).

Remark. In short, the homomorphism theorem asserts that every
homomorphic image of an algebra % is isomorphic to a quotient algebra
of .

Since a quotient algebra is completely determined by % and a congruence
relation ® of %, we can say that the homomorphism theorem establishes
the fact that the concept of homomorphism in a sense can be replaced by
that of congruence relation.

Another aspect of this result is that while the homomorphic image is an
extrinsic notion, it is, in a certain sense, equivalent to the concept of
congruence relation and quotient algebra which are intrinsic notions.

Thus, all homomorphic images of an algebra %A can be found up to
isomorphism “within”’ the algebra 2.

Proof. The mapping :[a]® — ap is well defined, 1-1 and onto by



58 CH. 1. SUBALGEBRAS AND HOMOMORPHISMS

Theorem 2.1. To prove that it is an isomorphism we still have to verify
that it preserves the operations; indeed,

F([@0)®), - - -, ({@n,-1]O)) = (by the definition of y)
= f(@op, - -, @y, _19) = (since g is a homomorphism)
= fy(@; - =+, @n,_1)p = (by the definition of i)
= ([fy(@o, - -, @, -1)]1O) = (by the definition of f, in the quotient

algebra)
= fy([@0]©, - - -, [@,,-1]©)f, which was to be proved.

The following lemma will be needed in the first isomorphism theorem.

Lemma 1. Let U be an algebra, let B be a subalgebra of A, and let O be a
congruence relation of A. Then {[B]O; F) is also a subalgebra of A.

Proof. Let ay, - - -, a,,_, €[B]O. Then a;=b,(0) for some b, € B. Thus
fy(ao’ ] aﬂy—l) = fr(bo’ ] bny—l)(®)7

and since f,(by, - - -, b,,_1) € B, we have that
fr(“o’ ] a’n,—l) € [B]G:
which is what we had to prove.
Theorem 2 (First Isomorphism Theorem). Let A be an algebra, B a
subalgebra of A, and O a congruence relation of A. Then
[B10O]Ope; F) = (B|Og; F);
an tsomorphism is given by

$:[6]© —[b]@, for be B.

Corollary. If we assume further that [B]1®=A, then
A O =~ B/Op.

Remark. In other words, the corollary asserts that if B is a subalgebra
of A, O is a congruence relation of U, and every congruence class contains
an element of B, then A/ O~ B/O;.

Proof. By Lemma 1, ([B]®; F) is a subalgebra of %. If we replace the
algebra U by the subalgebra {[B]®; F) and the congruence relation ® by
(56, then we arrive at the special case of the corollary. Hence, it is
enough to verify the corollary.
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Consider the mapping ¢: B— A/® defined by bp=[b]O. Then ¢ is
obviously onto since [B]®=A4 means that for every a € 4 there is a
b e B with [a]® =[b]0®. ¢ is obviously a homomorphism and ¢ induces the
congruence relation ®z. Hence, by the Homomorphism Theorem (Theorem
1), B/ Oz~ A/ O, completing the proof.

A direct proof, establishing that 4 is an isomorphism, would also be
very simple.

The statement of the first isomorphism theorem can be visualized by
means of a diagram. The whole algebra A is partitioned into subclasses

b
[bl6g — >

€«——[b]®

by the congruence relation ®. In the figure, the classes are separated by
the horizontal lines. The dotted area represents B. Picking out a b € B, the
doubly shaded area is [0]®; and the doubly shaded area fogether with the
simply shaded area represents [b]®. The elements of B/®; are the inter-
sections of the equivalence classes with B; that this intersection is always
nonvoid is guaranteed by the assumption that [B]® =4. The mapping ¢
makes an equivalence class correspond to its intersection with B.

Let 9 be an algebra and let ® be a congruence relation of 2. Our object
is to obtain a complete description of the congruence relations of the
quotient algebra %/®. To this end, we introduce the following notation.
Let ® be a congruence relation of % with ® = ®; then ®/® is a binary
relation on A/® which is defined as follows:

[a]® = [6]® (D/0O)
if and only if
a = b(D) (a, b€ 4).

Lemma 2. ®/0O is a congruence relation of %/ 0.
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Proof. (i) ®/0 is well defined because if [a]® =[a,]® and [6]© =[b,]0,
ie., a=a,(0) and b=b,(0), then
[e]® = [b]© (?/0)

if and only if
a = b(D),

which is equivalent to

a; = by(P),

since a=a,(P) and b=b,(®) (in the last step O < ® was used).
(ii) /O is an equivalence relation. This is obvious.
(iii)) ®/® has the substitution property. Indeed,

[,]0=[b]0 (®/0),¢=0,1,---,n,—1. Since a,=b,(D), we have that

) bn,—l)((b)y

assume that

fv(a’o, Tt a’n,—l) = fr(bo’ *

which means that

[fy(“o: R an,—l)]e = [fr(bo: R bn,—l)]® ((I)/@)

Hence,

f([20)©, - - -, [@n,-1]0) = f,([b6]®, - - -, [bs,-1]0) (D/O).

This completes the proof of the lemma.

|

|

|
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|

|

|

|
L

|

|

|

_ |
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|
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|
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—

L

____T___
T

The diagram can be used to visualize the statement of the lemma. In the
diagram © effects a partition of the elements of 4 as shown by the dotted
lines and ® a partition as shown by the solid lines. ®/® is the natural
partition of classes modulo 0, i.e., ®/© is the partition of the ‘“blocks’

modulo ® of 4.
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Consider the quotient algebra %/® and the congruence relation ® of
this quotient algebra. We define a congruence relation @ on A4 in terms of
® as follows:

a = b(®) if and only if [a]® = [6]O (D).
Lemma 3. ® is a congruence relation of A and ® = ©.

Proof. (i) @ is an equivalence relation. This is trivial, since @ is an
equivalence relation.

(ii) The substitution property holds for ®. Assume that a; =b,(D),
0=<i<mn,. Then, by the definition of ®, we have that [2,]0=[b,]0 (P).
Hence,

[l ®, - - -, [ag,-1]0) = f,([56]O, - - -, [y, -1]O) (D);
therefore,
[fy(a/o» ) a’ny—l)]® = [f'y(bo’ R bny—l)]® ((I)),
which implies that
fy(”'m Tt any—l) = fy(bo’ T bny—l)(é)’
which was to be proved.
(iii) ?2 0. If a=5(0), then [a]O® =[b]®, which implies that [a]O=

[6]© (@), and soa=b(®P), which was to be proved. This completes the proof
of Lemma 3. :

Lemma 4. ®/0=® if &> 0.

Proof. a=b(®/0) if and only if []®=[b]® (®/O), which is equivalent
to a=5b(D).

Lemma 5. If ® € C(U/0), then /0 = 0.
Proof. Trivial.

Theorem 3. Let U be an algebra and let ® be a congruence relation of U;
consider {[®); £, that is, the dual ideal [®)={¥"| ¥ 2 O} of C(A) generated
by ©. Then €(A/O)x ([O); <>. This isomorphism is effected by

(Y ) (® eC(¥U/O)),
the inverse of which s
D> /0 (D e[0)).

In other words, the congruence relations of %/® behave exactly as do
the congruence relations ® of A with ¢ = ©.

Proof. Let ¢: ® — @, ® € C(A/O) and let x: ® — ®/O, ® €[O). Then,
by Lemmas 4 and 5, ¢y and x4 are the identity mappings; therefore, both
are 1-1 and onto.



62 CH. 1. SUBALGEBRAS AND HOMOMORPHISMS

Since @y d; (for @y, O, € C(A/O)) implies that ®,=P,, and con-
versely, we have that ¢ is an isomorphism.

Theorem 4 (Second Isomorphism Theorem). Let A be an algebra, let
0, ® be congruence relations of A, and assume that @ < ®. Then

AD > AO[/D]O.
This isomorphism s effected by
[a]® — [[a]©)(D/0).
This situation can be viewed as shown in the diagram, where @ effects

the partition shown by solid lines and ® the partition shown by dotted
and solid lines.

[{al®] (@/0) —a o lale®
A
/
/
/
/
// / //
/ /
/ Yy /
/ / /
/ /
/ /
/ >0
/ / /
/ /

Proof. This theorem follows directly from Lemma, 5.
Corollary. Let ¢ be a homomorphism of U into B. If O is a congruence
relation of A such that the equivalence relation induced by @, e, = O, then
P:[a]® — ap
18 @ homomorphism of A/ O into B.

§12. HOMOMORPHISMS

Our first goal in this section is to find all algebras which can be con-
structed from a given one by constructing subalgebras and homomorphic
images repeatedly.
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Lemma 1. Let A and B be algebras. Let o: A — B be a homomorphism
and € a subalgebra of B. Consider

Co~!={x|2peC,xecd}

If Cp~1 is nonvoid, then (Cp~1; F) is a subalgebra of A.

Proof. Let co, -+, ¢,,_; €C0p~* and form f(co, - - -, ¢a,-1); applying o,
we obtain

(YRR Cny—1)P = fy(cops - - -, Cny-19) el

because € is a subalgebra and is thus closed under all operations. Hence,
fr(CO’ T cny—l) € C"P_l'

Lemma 2. Let %, B, and € be algebras.

(i) Let B be a homomorphic image of U and let € be a homomorphic tmage
of B. Then € is a homomorphic image of UA.
(ii) Let B be a subalgebra of A and let € be a subalgebra of B. Then €
18 a subalgebra of A.
(iii) Let B be a homomorphic image of A and let € be a subalgebra of B;
then there exists a subalgebra ® of W such that € is @ homomorphic tmage of D.

Proof.
(i) By Lemma 7.5.
(ii) It is obvious.
(iii) Let ¢ be a homomorphism of U onto B. Set D=Cop~1. Then
D# &, so by Lemma 1, D is a subalgebra of %A. By Lemma 7.4, € is a
homomorphic image of D.

Viewed diagrammatically, we have the following: Let o denote algebras;
then let

denote that the lower algebra is a homomorphic image of the upper
algebra, and let
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denote that the lower algebra is a subalgebra of the upper algebra. Then:

0] (ii)

7 N,

! h S \

\ °
W $ /

where the arrows with the solid lines denote the assumptions and the
arrows with the dashed lines denote the result.

Definition 1. Let A and B be algebras. We say that B is a derived
algebra of U if there exists a sequence of algebras, A=%,, X,,---, X,=B
such that X; is either a subalgebra or a homomorphic image of X;_,, 1=
1,2,---,n.

Theorem 1. Let B be a derived algebra of U. Then B is a homomorphic
tmage of a subalgebra of U.

Remark. As above, this statement can be visualized by observing the
following diagram, where the letters a,, - - -, a, stand for A or s.

A
\\
a 1 \\
\
\
\ s
\
\
a \\
2 \
\\
o \
. \
. *P
/
/
/
/
/
,/
an1 /
/
// h
/
/
/
/
/I
a, /,
“/
o
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Proof (by induction on n). n=1. There are then two possibilities:

either h or s

These sequences can be enlarged to:

respectively, since every algebra is a subalgebra and a homomorphic
image of itself. Thus the theorem holds for n=1. We assume that the
result is true for n, and prove it for n+1.

1. If in the sequence there are two successive arrows having the same
letter, then by (i) or (ii) of Lemma 2 they can be replaced by one arrow and
we can apply the induction hypothesis. From now on, we can assume that
there are no two consecutive arrows labelled by the same letter.

2. Assume the first arrow is labelled by # and that the second is labelled
by s. Then by (iii) of Lemma 2 they can be replaced by two arrows the
first labelled by s and the second by k. If there are no more arrows, we are
through. Otherwise the next arrow is &, and we come back to Case 1.

3. If the first two labels are s and %, and there are no more, then we are
through. If there is a third, it is an s and then, by (iii) of Lemma 2, the
second and third arrows can be replaced by two arrows, the first labelled
by s and the second by %, and the new sequence again falls into the cate-
gory of Case 1. This completes the proof of the theorem.

Theorem 1 can be very neatly put in terms of ‘“operators on classes of
algebras”, see §23.

The following problem will come up frequently. We are given a mapping
@ of a subset H of an algebra % into an algebra 8. When can ¢ be extended
to a homomorphism of 2 into B ? This question can easily be answered

if A=[H].
Theorem 2. Let A and B be algebras.

(i) If ag, -+, a,_1€ A and by, ---,b,_, € B, then there exists a homo-
morphism ¢ of {[ay, - - -, @y _]; F> tnto B with agp=by, - - -, @, _19p=b,_, if
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and only if for every pair p, qof n-ary polynomial symbols, p(ag, - - -, Gy _1) =
q(@ogs * + + @y _1) tmplies that p(by, - -+, by_1)=q(bg, - - -, by_1). If this is the
case, then there is only one such ¢ and it is given by:

@:plag, - -+, ay_y) _)p(bm b)), p GP(")(T).

(i) Let (a;|i€I) and (b;|i€I) be families of elements of A and B,
respectively; there exists a homomorphism ¢ of {[{a;|i € I}]; F) into B with
ap=b,, for ie€l, if and only if for every n<|I|, for every choice of
oy s in-1 €L, and for every pair p,q of m-ary polynomial symbols,
D@y, -y, )=q(@y, -, a,_,) implies that  p(b, -+, by, _ )=
q(byg, -+, by, _,). If this is the case, then there is only one such ¢ and it is
given by

@ P(Byys -5 Ay, ) —’P(bt‘p Tt bin_l)'

Proof. Both (i) and (ii) will follow from (*), which is (i) formulated for
an arbitrary ordinal « and for

a= <a0>"'>a’y"">y<mg = <b0a"',b~p"’>1<a-

If ¢ is a homomorphism, and a,p = b, then for any pair p, q of a-ary
polynomial symbols p(ag, - - -, @y, - - - )=q(aq, - * +, @,, - - -) implies that

p(bO""’bw”') =p(ao’...,a’y,...)q)=q(a0,...,a’1,...)qj
=q(bo’...,by’...)'

Thus the uniqueness and the formula for ¢ follow.

Now suppose that p(ag,---,a,,---)=q(a@s---,a,,---) implies that
p(bg, -+, by, -+ -)=q(bg, -, b, ---). Using the notation of Theorem 8.2,
this means that ®, < ®p. By the corollary to Theorem 8.2,

‘P13P(xo>‘",xy,'")—>P(bo:"‘:by:“')

is a homomorphism of P@(7) into B with x,p, =b, for y <«, and the con-
gruence relation induced by ¢, is ®;. Thus by the corollary to Theorem
114, ¢,: [#]0; = xp, is a homomorphism of B@(7)/ @, into B. By the
corollary to Theorem 8.2, there is an isomorphism ¢ between

<[a,0,.. Sy, ], F>

and P(7)/ 0,4, and a,h=[x,]0,, for y<a. So g, is a homomorphism of

lao, -, Ay - - ]; F) into B; since ay‘/’¢z=(ay‘/‘)?’z= ([xy]G)d)q’Z:xY?’l:b}"
we have completed the proof of Theorem 2.

Theorem 2 is so important that we give also a direct proof of the exis-
tence of . To simplify the notation, we prove it only in case (i). So let us
assume that the condition of (i) is satisfied and consider the mapping

P- p(ao, ) a’n—l) —‘)P(bo’ ] bn—l)-
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(1) @ is defined on the whole of [a,, - - -, @, _,] because if
a E[aO: T an—1]7

then by Lemma 9.3, there exists a polynomial symbol p € P™(r) such
that a=p(ay, - - -, a,_,), proving that every element of 4 can be repre-
sented in the form p(a,, - - -, @,_1).

(2) @ is well defined, for, if @ € 4 has two distinct representations

a = P(am ] an—l) and “=Q(ao, ] an-l)’

then p(aq,---,a,_1)=q(ag, - -, a,_,) and thus, by the condition of (i),
P(bg, -+, by_1)=q(bg, -+, b,_;). From the first representation, ap=
p(bo, - -+, by_1); from the second, ap=q(by, - - -, b,_;), and in both cases
we indeed get the same element of B.

(3) ¢ is a homomorphism. Let ¢y, -, ¢, _; €[ag, -+, an_1]. Then ¢
can be represented as

6 = pi(a/m Tt an—l)-
Letp_—-f'/(pO) - ':pny_l)- Hence

fy(co’ B cn,—l) = fy(Po(ao, Sy lgg), ',Pn,-l(ao: Sy Oy q))

= P(ao, ) a’n—l)'
Therefore,

fv(co’ . ':Cny—l)‘P = P(@g, "+, Un_1)@

= P(bo» ) bn—l)
= fy(Po(bo, R bn—l)’ o 'apny—l(bO’ ) bn—l))
[since ¢;= pi(ao, - - -, @y _1), Cp=p(bo, - -+, by_1)]
= fylcop, - - Cn,—1‘P)-
(4) Since a;=eaq, - - -, @,_;) and ¢" (by, - - -, b,_1)=b;, we have that
@:a,—> by

This completes the second proof of the theorem.

We shall now consider homomorphisms of an algebra into itself.

Definition 2. 4 homomorphism ¢ of an algebra U into itself is called an
endomorphism of .

Denote the set of endomorphisms of A by E(). Then E(A)< M(A4), the
set of all mappings of 4 into itself.

Lemma 3. G(U)=<E(YA);-) is a semigroup and e, the tdentity mapping,
ts the unit element of this semigroup.

This semigroup is called the endomorphism semigroup of the algebra %A.
It is a subalgebra of the algebra (M (4); ->.
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Theorem 3. Let S be a semigroup. There exists an algebra U such that S
18 1somorphic to €(N) if and only of S has a unit element (i.e., an element
1 such that 1-x=z-1=x for all x € S).

Proof. The “only if”’ part follows from Lemma 3. To prove the ““if”
part, assume that S has a unit element 1. Construct an algebra as follows:
Let A =8 and for a € S, define a unary operation f,(x)=ax. Set

F=(f,|acs8)

and consider the algebra A=<A4; F)>. We want to describe all the endo-
morphisms of . To this end, for a € A define a mapping ¢, by zp,=za.
This is a mapping of 4 into itself.
(i) @o=gy if and only if a=b.

Indeed, 1, =a, lp,=b. Hence, ¢, =g, is equivalent to a=b.

(i) @, € E(Y).
Since fy(2)p, = (bz)-a="b(xa)=fo(xp,)-

(iil) @q- @p=pas-
Indeed, z(@ops) = (2o ) s = (xa)b=2(ab) = 2pq,.

(iv) Let ¢ € E(A). Set a=1¢. Then p=g,.
Compute: 2p=F,(1)p=1.(1¢) =f.(a) =2a=2p,.

(v) @ — @, is an isomorphism between & and E(X).

Consider the mapping ¢: @ — @,. ¢ is 1-1 by (i). ¢ is onto by (iv). It
preserves multiplication by (iii). Therefore, ¢ is an isomorphism. This
completes the proof of Theorem 3.

Remark. This result was found and was semi-published by A. G.
Waterman (in the preliminary version of the third edition of G. Birkhoff’s
Lattice Theory) and by G. Gritzer (Some results on universal algebras,
mimeographed notes, August 1962). The first published proof is in M.
Armbrust and J. Schmidt [1]. The idea of the proof comes from G. Birkhoff
[6]. The result is implicit in J. R. Isbell [1]. It is also a special case of
Yoneda’s Lemma, well known in category theory. In their recent paper
[1], Z. Hedrlin and A. Pultr prove that in Theorem 3 the algebra % can be
chosen to be of type <1, 1); see Exercises to Chapter 2.

Let ¢ be an endomorphism of the algebra 2. If ¢ is also 1-1 and onto,
then ¢ is called an automorphism. Let G(A) denote the set of all auto-
morphisms of 4, G(A)< E(A).

Lemma 4. &(A)=<{Q(NA); > is a group and it is a subalgebra of E(A)
and of (M(4); ).

Proof. Clear.

®&(Y) is called the automorphism group of A.
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Corollary 1 (to Theorem 3) (G. Birkhoff [5]). Every group is isomorphic
to an automorphism group of some algebra.

Proof. Consider a group &. Apply Theorem 3 and obtain the algebra 2.
Then
& ~ GU).
By this isomorphism, every endomorphism ¢ has a two-sided inverse;

hence by Theorem 5.1 E(UA)=G(A) and so B~ E(A)= &(A). In fact, we
proved somewhat more than was required.

Corollary 1'. Given a group @, there exists an algebra W such that the
automorphism group of W is isomorphic to & and every endomorphism of A
is an automorphism.

For a general study of automorphism groups, see the monograph of
B. I. Plotkin [1].

Suppose we are given a semigroup & and a group . When is it possible
to find an algebra % such that

CW> &
and
GA)x &?

Let us observe (Theorem 5.1) that an endomorphism ¢ of the algebra %
is an automorphism if and only if there exists an endomorphism ¢ such

that yp=g=ec.

Corollary 2. Let © be a semigroup with identity and & a group. Set
G ={x | z€8, x has a two-sided inverse}.
Then there exists an algebra A such that
G~ EU)
and

&~ G(A)
if and only if G~ &',

Proof. The “only if”’ part follows from the previous remark. To verify
the ““if” part, let A be the algebra constructed in Theorem 3. Then ¢, is
an automorphism of U if and only if @ has a two-sided inverse in &.

Indeed, a has a two-sided inverse b, that is, ab=ba=1, if and only if

Pa Po=Po Pa=P1=¢

Some other semigroups can also be constructed from an algebra ¥,
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namely, the semigroups of all 1-1 homomorphisms and all onto homo-
morphisms, respectively. Their properties will be described in the exer-
cises. For the best result in this field, see M. Makkai [1].

The algebra % is called simple if its only congruence relations are w, .

Suppose ¢ is an endomorphism; then ¢,, defined by ze,y if and only if
Zp=1yep, is a congruence relation. Suppose we consider now endomorphisms
of a simple algebra 2. Then e, = or w. £, =w means that ¢ is 1-1 and thus
by Theorem 5.1, Bp=vyg implies B=1y if B and y are arbitrary endomor-
phisms. ¢,=: means that ¢ maps every element onto a single element
a, ¢: x — a € 4. This implies that «- ¢ =¢ for any endomorphism «.

Lemma 5 (G. Gritzer [7]). Let A be a simple algebra. Then in the
endomorphism semigroup of U every element o is either a right annihilator or
@ satisfies the right cancellation law.

Some further information on this topic can be found in the exercises.

Endomorphisms can be considered as unary operations; thus from the
algebra A={4; F) we can form (4; F U E(A)>=A'. The congruence
relations of A’ are called the fully invariant congruence relations of .
Thus they form an algebraic lattice. Theorem 10.6 applied to A’ gives the
following useful result.

Theorem 4. Let A be an algebra, a,be A and a#b. Then there exists a
mazximal fully invariant congruence relation ¥ of U such that a £b (V).

If we specialize the corollary to Theorem 11.4 to the special case
A=9B, we get the following result.

Lemma 6. Let ¢ be an endomorphism and O a congruence relation of the
algebra A. Then ¢: [a]O — [ap]O is an endomorphism of A/ O if and only of
a=>b(0) implies that ap=be(O).

Corollary. If © s fully invariant, then @ — ¢ is a homomorphism of
E(A) into E(A/O).

EXERCISES

1. Let 4 and B be sets and ¢ a mapping of 4 into B. Let ® be an equivalence
relation on 4. Prove that ¢: [x]® — x¢ is a mapping of 4/® into B if and
only if a=b(0) implies that ap=beg, i.e., O Ze¢,.
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11.
12.

13.

14.
15.
16.
17.

18.

19.
20.
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. Which groups <G;-, 1> have the property that every subalgebra is a

group ?

. Let <G;-, 1) be a group, ® a congruence relation of {G;-, 1>, N=[1]0.

Then N is normal, i.e., a€ N, x € G imply zax~! € N. Further, z=y(0)
if and only if zy~! € N.

. If (N;-, 1) is a normal subgroup (i.e., N is normal and <{N;:, 1) is a

subgroup) of <G;-, 1>, then the relation © defined by z=y(®) if and
only if xy = € N is a congruence relation and [1]® =N.

. Formulate and prove the statements of Ex. 3 and Ex. 4 for rings.
. Let <L; v, A) be a lattice with a zero element, 0, and ® a congruence

relation of {L; v, A)>. Then [0]0O is an ideal.

. Is the converse of Ex. 6 true? That is, can every ideal I of a lattice

(L; v, A) with a zero be represented as I=[0]® for some congruence
relation ® ? If I can be so represented, is ® unique?

. The same question as in Ex. 7 for distributive lattices.
. The same question as in Ex. 7 for Boolean algebras.
. Consider A =<4; fo, f1> of type <1, 1>, where A ={a, b}, and fo(a)=>b,

folb)=a, fi(x)=b. Find PP(Y).

Find P™(Y), if A is the algebra of Ex. 10.

Let U be a unary algebra, i.e., of type <1, 1,---, 1, -.>. Describe P™()
in terms of P®(Y).

Let B be a Boolean algebra with more than one element. An n-ary atomic
Boolean polynomial is one of the form z{o A - - - Azin-3, where 4g,- -+, ¢,
are zeros and ones, zj=x; if 9;,=0, z{/=x; if ¢;=1. Prove that every
n-ary polynomial over B8 is a join of atomic polynomials.

Prove that there are exactly 22" elements of P™($B). (8B as in Ex. 13.)

Let & be a lattice. Describe P®(Q) and P@®(Q).

Prove: if Y is finite, o(7) < w, then P™(Y) is finite.

Characterize P(9) in terms of the following composition of functions: if

Po € P"‘o’(?,[), R pn, -1€ P(""’"l)(%[),
then p=f(po, " * +, Pn,-1) is & function of ny+ - - - +n,, , variables, and

P(zos + + -5 Tng+ - +np, - 1-1) = fy(po(o, - + ©3Tng-1)s
pl(an’ c 9Ty +n1—1)" t Ty

pny-l(xno-l-u'-l-n,.y_z:"',xno+~--+n,‘y_1—1))'

(See, e.g., J. Schmidt [5]).

For an algebra A set L(A)={n|n=2 and P™A)# P™"~ DY)} (see
K. Urbanik [4]). Let B be a Boolean algebra; set g(xq, %1, 2) = %o+ 21 + T2,
where u+v=(uAv')V (¥ Av). Find L({B;g>). (Hint: if |B|>1, then
L({B; g>)={2n+1 I 0<n<w}.)

Describe all possible ways of constructing ‘‘ranks’’ of polynomial symbols.
Let p, po,- - s Pn—1 be a-ary polynomial symbols, r an n-ary polynomial
symbol, and p=r(po, -, Pn-1). If r=f(ro, -+, rs, 1), then p=
So(dos- -+, qn, 1) for some ¢, € P(r).
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40.
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Let p, q be n-ary polynomial symbols, rq, -+, r,_1 be B-ary polynomial
symbols, and p(rg,: -+, r,_1)=q(ry, - -+, ¥,_1). What conclusion can be
drawn from this ?

Let K< K(7) be a class of algebras such that no polynomial algebra
belongs to K. Is it still possible that Ox=w?

Express O in terms of 0.

Prove Lemma 8.5 and Theorem 8.1'.

Formulate and prove the converses of Lemmas 8.7, 8.8, and 8.9.

Prove that if f(zg,-: -, x,-,) is an algebraic function of % and O is a
congruence relation on U, and a;=b,(®) for 0=<7<n, then

f(a’O""!an—l) Ef(bo,"', bn-—l) (®)

Prove that if f(xg,- -, x,-1) is a function defined on a Boolean algebra
B such that f has the substitution property with respect to any congruence
relation, then f is an algebraic function. (G. Grétzer, Revue de Math. Pure
et Appliquées, 7 (1962), 693-697).

Find all functions on a distributive lattice & with 0 and 1 which have the
substitution property. (G. Grétzer, Acta Math. Acad. Sci. Hungar., 15
(1964), 195-201).

Let A be an algebra, @ # B < A such that for any algebraic function f and
bgs+++, by, € B, we have f(bg,- -+, b,_1) € B. What can we say about B?
Let A be an algebra and let U(A) be the set of all unary polynomials,
considered as mappings of A into itself. Prove that <U();-) is a semi-
group with identity and if the algebra is finite then so is this semigroup.
Prove that every finite semigroup with an identity is isomorphic to some
<UA); -> where U is a finite algebra.

If a is constant in Y, then Y has a smallest subalgebra B and b € B if and
only if b is constant in 9.

Let B be a subalgebra of %A. Then p — pg is & homomorphism of P™(A)
onto P™(B)

Let K, and K, be classes of algebras, Ko< K;. Then L™(K,) is a homo-
morphic image of P (K;).

Let K be the class of Boolean algebras. Prove that P™(K) has 22" ele-
ments. (Hint: prove that P™(K)~ P™(B) for every B € K, with |B|>1
and use Ex. 14.)

For an algebra 9 let #°(A) denote the system of all subsets B of 4 such
that (B; F) is a subalgebra of U. If %) is not a closure system put
F*UA)=F°N) U { B}, otherwise put F*U)=F°A). Prove that F*A)
is an algebraic closure system. Characterize & *(2).

Let 9 be a unary algebra. Prove that if 4, () for ¢l and I# o,
then | (4| i e I)e L.

Characterize & (Y) for unary algebras.

Define the subalgebra lattice () as (F(A); <. Prove that L) is an
algebraic lattice.

Let € be an algebraic lattice. Prove that there exists an algebra % with
QA L (L(YA) was defined in Ex. 38).

The multiplicity-type u of an algebra A is a sequence of cardinals
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42.
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(Mg, My, o+ o, My, * * * Dy<y Where M= |{'y| y<o(r), n,=1}|, that is, my is
the ‘“number” of {-ary operations. Let T'(u) denote the class of all
algebraic closure systems (), where the multiplicity type of ¥ is p.
Find an algebra ¥ for which )¢ T'((m,n,1,0,0,---,0,--->) for
any m, n.

Let p=dmg,--+, My,---> and u'={mg,--+, mj,-+-» be multiplicity-
types (see Ex. 40). Is it true that if 3 (m,|¢<j)< 3 (mj|i<z) holds for
infinitely many j, then T(u)< T(n’) ?

Find p# u’ such that T(u)=T'(u’)-

43.* Prove that in Ex. 39 9 can always be chosen of multiplicity-type

44,

45.

46.

47.

48.
49.

50.

51.

52.

53.

54.

<~o,m,1,0,0,-.-,0,-.-> for some mt.

Let ‘B be an infinite directed partially ordered set. Prove that P can
always be represented in the form P= | (P,|'y<a), where (P,; =) is
directed, P,< P, for y<8<a and |P,|<|P| for all y<a. (T. Iwamura,
Zenkoku Shijo Sugaku Danwakai, 262 (1944), 107-111). (Hint: Use
Theorem 9.3.)

Let A be an algebra and © a binary relation on 4. Then @ is a congruence
relation of U if and only if it is a congruence relation of each algebra
A5 £y, y<o(r).

Prove Lemma 10.2 without using the concept of a uniform sequence.
Let F < F,. Prove that €(<4; F,)) is a complete sublattice of €(<(4; F)).
Derive Corollary 2 of Lemma 10.2 from this statement.

Prove Lemma 10.3 directly, that is, without using Lemma 10.2.

Let 4 be a set and &/ an algebraic closure system over A x 4. Give a
necessary and sufficient condition on .27 for it to represent a set of equiva-
lence relations on 4 which forms a complete sublattice of the lattice of all
equivalence relations on 4.

To every algebra A=<A; F)> there corresbonds a unary algebra ' =
(A; Fy> such that @ is a congruence relation of 9[ if and only if it is a
congruence relation of .

Let =(L; v, A)> be the four element chain. Find in & a compact
congruence relation which is not principal.

Let =(L; v, A) be a distributive lattice. Prove that every compact
congruence relation of & is principal if and only if & is relatively comple-
mented, that is, a=b=c (a, b, c € L) implies that there exists a d € L with
bvd=a, bAd=c. (Use the following result of G. Grétzer and E. T.
Schmidt (Publ. Math. Debrecen, 5 (1958), 275-287): if a property P of
distributive lattices is preserved under the formation of homomorphic
images and the three element chain does not have property P, then every
distributive lattice having property P is relatively complemented.)

(G. Grétzer and E. T. Schmidt [1]) Prove that for every algebra U there
exists an algebra A, such that €(A)x~ €(A,) and every compact congruence
relation of 9, is principal.

Show by example that in Theorem 10.3 n cannot be fixed.

* Necessary and sufficient conditions for £() e T(x) and T(u)< T(n') were
given by M. I. Gould.
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Let U be an algebra and B a subalgebra of U, @ a congruence relation of
8. Assume that there exists a congruence relation ® of % such that
®; = O. Prove that there exists a smallest ® with this property.

Under the conditiorns of Ex. 55, does there exist a maximal ®?

Work out Example (2) of §10.

Find a lattice <L; vV, A}, congruence relations ®, ® of {(L; v, A) and
elements a, b in L such that a=bd(® v @) for which any sequence a=
205 21,° + 5 2, =b (2 € L) satisfying

z = 2141(0) or 2z = 2z,,(0), 1=0,1,..--,n—1,

is at least of length m for a given positive integer m.

Let m be a fixed cardinal number. Find an algebra % and a, b € 4 such
that the set of all congruence relations ¥ which are maximal with respect
to the property a #b(¥') is of cardinality m.

Let A be an algebra, @ # B A and assume that {[B]®; F') is a sub-
algebra of 9 for every congruence relation ®. Prove that B is a subalgebra
of A.

Let A be an algebra and @ # B< A4, @ and ® congruence relations of Y.
Define By=B, B, =[B,]®, By=[B,]®, B;=[B,]0,- - -. Prove that

[B(® v ®) = BgU B, U By U :--.
Prove that if @0 =0, then
[BI(® v ®) = B,.

Let ® and @ be congruence relations of % and B 4. © and ® are weakly
associable over B if [B](® v ®)=[[B]0O]®=[[B]®]0. Does [B](®V ®)=
[[B]®]® imply that ©® and ® are weakly associable over B?

Let U be an algebra, and B a subalgebra of UA. Let ® be a congruence
relation of Y and ® be a congruence relation of B such that Oz < ®. We
define a binary relation ®(®) on [B]® as follows: a=b(0(®)) if and only
if there exist ¢, d € B such that a=¢(0), c=d(®), d=b(0). Prove that
O(®) is a congruence relation of the algebra {[B]©®; F).

Using the notation of Ex. 64, prove the isomorphism

[B1©/©(®) ~ B/®.

(Zassenhaus Lemma) Let (D; F> and <{E; F) be subalgebras of <4; F)
and assume that D N E# @. Let ® and ® be congruence relations of
{(D; F) and {E; F), respectively. Set

¥ = Opne V Ppnr
Then we have the following isomorphism:
[DNE]O/O(Y)~ [D N E]D/D(Y)

(A. W. Goldie [1]).

Find a mapping which sets up the isomorphism of Ex. 66.
(Jordan-Hélder-Schreier Theorem) A normal series of an algebra U is a
finite sequence (*) A=Wy, ;,---, A, of subalgebras such that (i)
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Ay24,2---24,, (ii) there exist ®; € C(,), 1=0,---, n with @,=w and
A;=[A4,]10,_1,1=1,---,n. If (**) A=Bo,---,B,, is another normal
series, the two normal series are said to be isomorphic if n=m, W, =B,
and the ©,eC¥;), ®;eC(B,;) can be chosen in such a way that
Wi/ Oy By, /Py ©=0,--+, n—1, for a certain permutation ko,- -+, kn_,
of 0,. .-, n—1. (**) is a refinement of (*) if every B, is an ;. Prove that
(*) and (**) have isomorphic refinements if A, =B, and the O, and P,
can be chosen in such a way that (©,)4~5, is weakly associable with
(@) 4~y Over A, = By. (This formulation is from Grétzer [4]. See also
A. W. Goldie [1] and M. 1. Gould [1].)

Interpret Ex. 64, 65, 66, 67, and 68 for the cases of groups and rings.

Let ® and @ be congruence relations of a group or a ring. Prove that
OD=9006.

Can the statement of Ex. 70 be proved for lattices (distributive lattices) ?
Let ® and @ be congruence relations of a group. Describe [1}(® Vv @) in
terms of [1]© and [1]®.

Give the group-theoretic form of Theorem 11.3.

Simplify the statement of Theorem 10.3 for lattices. (R. P. Dilworth).
Prove that in a distributive lattice ¢ =d(©(a, b)) if and only if

[l@Ab)VviecAndIA(cvd) =cAd

and
[@vd)viicad]IA(vd =cyvd.

(G. Grétzer and E. T. Schmidt, Acta Math. Acad. Sci. Hungar., 9 (1958),
137-175.)

Give the ring-theoretic form of Theorem 11.4.

Let %A be an algebra which has a smallest subalgebra. Prove that every
derived algebra of 9 has a smallest subalgebra.

Prove the corollary of Theorem 8.2 from Theorem 12.2.

(G. Grétzer [7]) Prove the following converse of Lemma 12.5: Let € be a
semigroup with identity in which every element a is either a right anni-
hilator or a satisfies the right cancellation law; then there exists a simple
algebra U such that EA)xE.

Let Ey(A) denote the set of all onto endomorphisms of . Prove that
Co(A)=<Eo(A);-> is a semigroup with identity satisfying the left
cancellation law.

Prove the converse of Ex. 80.

Let E,(A) denote the set of all 1-1 endomorphisms of . Prove that
€, =<E(A); -> is a semigroup satisfying the right cancellation law.

(E. Fried and M. Makkai) Let o € E; (), B € Ey(A), and y, § € E(A) such
that ya = 88. Then there exists a ¢ € E(Y) such that y= B¢ and ga= 8.

(M. Makkai[1]) Find additional properties of <G(), €;(A), Eo(A)>.

A and B are said to be weakly isomorphic if <A, P“)()> is isomorphic to
(B; P(B)> (A and B may be of different types). Prove that if A and B
are weakly isomorphic, then the subalgebra lattices, congruence lattices,
and endomorphism semigroups are isomorphic.
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(Goetz[1]) Let z — x be a weak isomorphism of the group <G;-, 1> to the
group {G;o, 1">. If 2%y =yx? for every z, y € @ (i.e., 22 is in the center of
&), then acb=a-b for every a,be @ or acb=b-a for every a,be€ G,
and 1=1".
Define the concepts of homomorphism, congruence relation, and sub-
algebra for infinitary algebras. Prove the results of §7.
The type 7 of an infinitary algebra o is a sequence {ag,---, ay,--*D,
y <o(r), where «, is an ordinal. The characteristic m(r) of = is the smallest
infinite regular cardinal m such that & <m for all y <o(r). Then % is an
algebra if and only if the characteristic is Xo.
Define polynomials and polynomial symbols for infinitary algebras of
type 7, by transfinite recursion. Prove that every polynomial (polynomial
symbol) can be built up in less than wy,, steps.
Generalize the results of §8 for infinitary algebras.
Prove that |[H}|=(|H|%+m(r)) -o(r), for infinitary algebras, where
|H|m = 5 (|H|t|n<m).
(G. Grétzer [8]) Generalize Theorems 9.1 and 9.2 to infinitary algebras
using the concept of m-algebraic closure systems (a€[H] implies
a € [H,] for some H, = H with [H,| <m).
(G. Grétzer [8]) Generalize Ex. 38 to infinitary algebras (use Ex. 0.82).
Show that €() is always a complete lattice even for infinitary algebras,
but Lemma 10.2 is false in general.
Find counterexamples for Theorems 10.3 and 10.6 among infinitary
algebras.
Prove that the results of §11 carry over to infinitary algebras.
(M. Armbrust and J. Schmidt [1]) Let & be a group of permutations of
a set A. Prove that there exists an infinitary algebra 9 whose auto-
morphism group is &.
(P. Erdés and A. Hajnal [1]) Prove that for each n < w there exists an
algebra A= (A4; f> of type (2> such that |4|=K, and ¥ has no proper
subalgebra of power X,,.
Find two algebras % and B such that there exist hormomorphisms of
onto B and of B onto A but A and B are not isomorphic. Can A and B
be chosen to be semigroups ?
(D. Monk [1]) Let % be an algebra with more than one element with the
property that every homomorphie image of 2 with more than one element
is isomorphie to Y. Prove that () is well ordered.

PROBLEMS

(a) Let uo and u, be multiplicity types. (See Ex. 40-42.)
(1) Find necessary and sufficient conditions for 7T'(u,)< T(g,) and
T(po) = T(p1).
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(2) Let & be an algebraic closure system. Find necessary and sufficient
conditions for &7 € T'(u), where u is a fixed multiplicity type.

(3) Find a ‘“normal form” theorem for multiplicity types, that is,
find a set N of multiplicity types, such that (i) € N can be easily
determined; (ii) for every multiplicity type po there exists a u; € N with
T(po)=T(pm); and (iii) if po# pys po, py € N, then T(uo) # T(p1)-

(b) Same as (a) for infinitary algebras.

(¢) Can T'(uo) < T'(u,) be tested using the polynomial algebras only ?

(d) Can T'(po) <= T'(uy) be tested using ‘“small” algebras only ? Is small =
finite for countable multiplicity types ?

2. Let & < P(A x A). Find necessary and sufficient conditions on &7 for the
existence of an algebra A =<4; F) with o/ =C().

3. Let EcM(A). Find necessary and sufficient conditions on E for the
existence of an algebra A =<{A4; F) with E=E().t

4. Characterize the closure system of the closed subalgebras of a topological
algebra. (U is a topological algebra if a topology T is defined on 4 such that
every f, is continuous. A similar, but easier, problem was solved in
O. Frink and G. Griitzer [1].)

5. Is the isomorphism of normal series (Ex. 68) transitive ? Is it transitive for
composition series (normal series with no proper refinement) ?

6. Describe all algebras % with the property that all functions having the
substitution property with respect to any congruence relation are alge-
braic functions. (See Ex. 27.)

7. Let € be a semigroup and & an algebraic lattice. When} is it possible to
find an algebra U with )~ € and C(A)x> {?

8. Let A be an infinitary algebra of characteristic m; let a topology .7~ be
defined on A (i.e, J is a closure system; an X € J is called a closed set)
and let us assume that if B is a subalgebra of Y and C is the topological
closure of B, then € is also a subalgebra of A. Let #»(A) denote the system
of all closed subalgebras of 9 which can be generated by <n elements.
Characterize & y(U). (References: O. Frink and G. Grétzer [1], G. Gritzer§
(81)

9. Describe the semigroups which are isomorphic to an endomorphism semi-
group of an algebra with a given ‘“small” congruence lattice. (For simple
algebras, see G. Gratzer [7].)

T The case when all the ¢ € E are permutations has been completely settled by B.
Jénsson, W. A. Lampe, and independently by P. Goral¢ik, Z. Hedrlin, and J. Sichler,
who also have interesting contributions to the general case.

1 It was conjectured by the author that the automorphism group and congruence
lattice are independent (with the trivial exception mentioned in Exercise 2.34). This
was claimed to have been proved by E. T. Schmidt [2], the proof, however, was
incorrect (two computations went wrong, one is mentioned in Exercise 2.31). Never-
theless, the conjecture still seems to be true. References: G. Gritzer [7], Exercise 79,

Exercise 2.35. W. A. Lampe has some relevant unpublished results, see Exercises
2.43 and 2.44.

§ Note that Theorem 4 of G. Grétzer [8] is incorrect as stated, but the mistake is
easy to correct.
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10. Let K be a class of algebras and £~ the category whose morphisms are the
homomorphisms in K. Let /# and 5# denote the 1-1 and onto homo-
morphisms, respectively. Characterize the triple X", #, 5#). (If K con-
sists of a single algebra, this was solved by M. Makkai [1]. Note that all
conditions of M. Makkai [1] can be formulated in the general case.)



CHAPTER 2
PARTIAL ALGEBRAS

§13 and §16 contain the elements of the theory of partial algebras.
§14 and §15 are rather technical; the reader is advised to omit the proofs
at the first reading. §17 and §18 give the characterization theorem of
congruence lattices; the reader should omit these sections completely at
first reading. Since §17 and §18 contain a long series of results, it is useful
to cover them first without reading the proofs. These two sections were
included to show the usefulness of partial algebras.

§13. BASIC NOTIONS

Let us recall that a partial algebra U is a pair <4; F) where A is a non-
void set and F is a collection of partial operations on 4. We will always
assume that F is well ordered, F=<{fo,f1, [y Dy<ow The type
of the partial algebra % is defined in the same way as for algebras.

Two partial algebras %, B of the same type = are isomorphic if there
exists a 1-1 mapping ¢ of 4 onto B such that f,(aq, - - -, @,,-,) exists if
and only if f,(aop, - - -, @y, - 1) exists and

fv(ao: Tt an,-1)<P = fy(ao‘P: ttey an,—l‘P)'

The first question that arises is why we consider partial algebras in the
study of algebras. Our most important motivation is the following:
Consider an algebra % and a nonvoid subset B of 4. Restrict all the opera-
tions to B in the following way: Let f,e F,b,,---,b, _,€B; if
fy(bos - -+, by, 1) € B, then we do not change f,(bo, - -, b,,_,). However,
if f,(bo, - - -, bs,-1) ¢ B, we will say that f,(b, - - -, by, ;) is not defined. We
will denote by B =(B; F) the system that arises.

In spite of the fact that we started out with an algebra, 9B is only a
partial algebra unless B is closed under all the operations.

Thus we can say that the language of partial algebras is the natural one
if we want to talk about subsets of an algebra and the properties of
operations on these subsets even if the subsets are not closed under all the
operations. The question we are now going to settle is a very simple one.

Is the concept of partial algebras too general from this point of view ?
79
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Theorem 1. Let B be a partial algebra. Then there exists an algebra A
and 4,< A such that

B (A;F).

Proof. Construct 4 as BU {p} (p ¢ B). If f,(ao,---,a,,-1)=0a in B,
keep it. Otherwise, let f,(ao,---,a,,_,)=p. Take 4,=B; the rest is
trivial.

For algebras, there is only one reasonable way to define the concepts
of subalgebra, homomorphism, and congruence relation. For partial
algebras we will define three different types of subalgebra, three types of
homomorphism, and two types of congruence relation. In many papers, the
authors select one of each (probably based on the assumption that if there
was one good concept for algebras then there is only one good concept for
partial algebras) and give the reasons for their choices. In the author’s
opinion, all these concepts have their merits and drawbacks, and each
particular situation determines which one should be used.

First we define the three subalgebra concepts.

Let 2 be a partial algebra and let @ #B< 4. We say that B is a sub-
algebra of A if it is closed under all operations in %, i.e., if by, - - -, b,,-.€B
and f,(bo, - - -, b,, _,) is defined in ¥, then

fr(bo: Y bn,—l) € B
In this case,
D(f,, %) n B~ = D(f,, B) for y <o(7),

where D(f,, A) and D(f,, B) denote the domain of f, in A, and in B,
respectively.

In the case of algebras, the new notion of subalgebra is the same as the
old one.

We shall now describe other ways of obtaining partial algebras from a
given one.

Consider a partial algebra U and let @ # B< A. For every y <o(r) we
define f, on B as follows: f,(by, - - -, b,,_;) is defined for b, - - -, b, _, and
equals b if and only if f,(bo, - - -, b,_;) is defined in A and f,(b, - - -, by, _1)=
b e Bin U. Thus for B=(B; F) we have that

D(f'y’ %) = {<b07 Tt bn,—1>l<b05 Y bn7_1> € D(fy, QI) N B
and f,(bo, - - -, bn, 1) € B}.

In this case, we say that B is a relative subalgebra of %, and U an exten-
sion of B. We will use the convention that if we write, ““let % be a partial
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algebra, B< A4, then the partial algebra 8 - - - ”, then B always means the
relative subalgebra determined by B. Observe that a subalgebra B of a
partial algebra 2 is only a partial algebra, and that a subalgebra B is a
relative subalgebra of % with D(f,, 8)=D(f,, %) N B™, for y <o(7).

To introduce the third kind of subalgebra, we will have to be somewhat
more careful about our notation. Let U be a partial algebra and g # B< 4.
Suppose we have partial operations f,’ defined on B such that if
f'/'(bOr T bn7—1)=b’ thenfr(bm Tt bﬂy—1)=b' Let

F' = <f0,7f1'7 © '7f7,’ C Dy<om:
Then we say that 8, =(B; F") is a weak subalgebra of 2. In this case,
D(f,’,8:) = D(fy. B) = D(f,, A).

Note that we could not use the notation {B; F') in this case because this
would suggest that the partial operations on B are the restrictions of the
partial operations on 4 which is not at all the case.

Next we define three notions of homomorphism.

Suppose that A and B are partial algebras. ¢p: A — B is called a homo-
morphism of A into B if whenever f,(ao, - - -, @n,-1) is defined, then so is

fv(“o% Tty an,—l?’) and
fv(a‘o’ Tty a’ny—l)q’ = fr(ao(P’ Tty an,—l?’)'

By the definition of homomorphism, if f, can be performed on some
elements of 4, then f, can be performed on their images. A homomorphism
is called full if the only partial operations which can be performed on the
image are the ones that follow from the definition of homomorphism.

Formally, the homomorphism ¢ of % into B is a full homomorphism if

Fr(@op, - -+, any—lq’) =ap, Qg5 0y, _1, A E A4

imply that there exist by, - -, b,,_1, b€ A with bop=aep,- -, b,,_1¢=
Any-1Ps bp=ap andfr(bo’ ] bn,-1)=b-

A strong homomorphism ¢ is a homomorphism such that f,(ao, - - -, @y, -1)
is defined in % if and only if f,(acp, - -, @y, 1) is defined in B.

Every strong homomorphism is thus a full homomorphism, but the
converse is false. Every full homomorphism is a homomorphism, and the
converse is again false. In the case of algebras, all three concepts are
equivalent to the concept of a homomorphism of an algebra.

Let ¢ be & homomorphism of % into B, C=Ae, and € the corresponding
relative subalgebra of 8. If ¢ is an isomorphism of % and €, then ¢ is
called an embedding of A into B.
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We shall now discuss congruence relations.

Given a partial algebra % and ©, an equivalence relation, © is called a
congruence relation if we have:

(SP) If a,=b,(0) and if f,(a,, - -, a,,_,) and f, (b, - -, b,,-1) are both
defined, then

fv(a’o’ Tt a‘ny—l) = f‘/(bO’ R bn,—l)(g)'

A congruence relation © on ¥ is called strong if whenever a,=b,(0),
0=<i<mn,, and f,(ag, - -, @y, -1) exists, then f,(b, - - -, b,,_;) also exists.
The following four lemmas connect up the above defined concepts.

Lemma 1. Let % and B be partial algebras and let @ be a homomorphism
of A into B. Let ¢, be the equivalence relation induced by ¢. Then &, is a
congruence relation.

Proof. Suppose that f,(ao, - -, a,, ;) and f,(bo, - -, b,,-1) are both
defined and that a,=b(e,). Since a,=b,(¢,) is equivalent to a,p=b,p, We
have that

fy(a’O’ M) an,—-l)q’ = fy(a’O(P’ T an,—l‘P) = fy(bO(P: R bn,—l‘P)
= fy(bo: T bn,—l)‘P’
so that

fy(ao, ) an,—l) = fy(bo, R bn,—l)(ew)-

Lemma 2. Let %A and B be partial algebras and let ¢ be a strong homo-
morphism; then e, is a strong congruence relation.

Proof. It suffices to verify that if f,(a,, -, @,,-1) is defined and
a;=by(e,), then f,(b, - - -, b, _;) is also defined.

Since f,(ag, - - -, @,,_,) is defined and ¢ is a homomorphism, we have
that f,(acp, - - -, @y, _19) is also defined and so

fy(a‘o’ v ‘,an,—1)<P = fy(ao% ) an,—l‘P) = fr(bO(P’ A bny—l‘P)'

By the definition of strong homomorphism, f,(bep, - - -, b,, _,) is defined
if and only if f,(b,, - - -, by, _,) is defined; thus f,(b,, - - -, b,, -1) is defined.

To prove the converse of Lemmas 1 and 2 we need to define a quotient
partial algebra.

Let A be a partial algebra and let © be a congruence relation of %A. We
define the quotient partial algebra A/© ={A/0; F> as follows:

If bo, - - -, by, 1 € A/ O, then f, (b, - - -, by, _,) is defined to be equal to b
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if and only if there exist a; € 4 and a € 4 such that b, =[a,]0, b=[a]® and
f}'(aO’ cee, any_1)=a/,

Lemma 3. Let A be a partial algebra and © a congruence relation of U.
Then the mapping @: a — [a]® s a full homomorphism of A onto A/O =
<A4|0; Fy and e,= 0.

Proof. The proof follows directly from the definition.

Lemma 4. Let U be a partial algebra and © a strong congruence relation
of A. Then the mapping ¢: a — [a]O is a strong homomorphism of A onto
A/O and e,= 6.

Proof. Again, by the definitions.

Summarizing, we have the following theorem.

Theorem 2. Under the correspondence o — &, homomorphisms correspond
to congruence relations on the one hand and strong homomorphisms correspond
to strong congruence relations on the other hand.

There is no such concept as “full congruence relation”, which would
correspond to full homomorphism, since “g is full” means a relationship
between 2 and B and is not a property of e,.

As we explained at the beginning of this section, we develop the theory
of partial algebras in order to obtain a theory to use when considering the
properties of an operation on a subset of an algebra. Therefore, if U is an
algebra, o #B< A and © is a congruence relation of U, then it is quite
natural to require that ®; be a congruence relation of the partial algebra
B, and every congruence relation of 8 can be so obtained from some
algebra 2. Our next theorem states that the notion of congruence relation
as defined above does exactly this.

Theorem 3. Let B be a partial algebra and let © be a congruence relation
of B. Then there exists an algebra A which is an extension of B, and a
congruence relation ® of A such that Py= 0.

Theorem 3 will be proved in §14 and §15 in a much stronger form. It was
proved in another form by G. Gratzer and E. T. Schmidt [2]. A similar
characterization of strong congruence relations will be given in §16. A
very simple direct proof of Theorem 3 is given in G. Gritzer and G. H.
Wenzel [1].
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§14. POLYNOMIAL SYMBOLS OVER A PARTIAL ALGEBRAf

Let 7 be a fixed type of partial algebras. The polynomial symbols
P@(7) are defined the same as they were for algebras. In this case, an
a-ary polynomial symbol does not always induce a mapping of 4% into 4,
if A is a partial algebra. However, some of them do; this will be clear from
the following definition.

Definition 1. Let A be a partial algebra of type =, ag,---,a,,--- €4,
y<a,p€P@(r). Then p(ag, - -, a,,- - -) ts defined and equals a € A if and
only if it follows from the following rules:

(i) If p=x,, for 8<a, then p(ag, - - -, ay, - - ) =ay;

(11) ifpt(a’o’ o ‘)aredeﬁnedandpi(ao’ te ’)=b£ (0§i<n’7):f7(b0’ ) bn,—l)

18 defined and p=1£,(po, - - -, Pn,-1), then p(ay, - - -) is defined and

P(ao’ v ) = fy(bo, ) b’ly_l)'
The basic difficulty which arises is that if we take

a = <a’0"">a’y"">y<a

(a, € A) where % is a partial algebra, then the congruence relation ®, of
B@(7) cannot be defined as in Theorem 8.2. As a matter of fact, it can be
defined that way if and only if the a, generate a subalgebra which is an
algebra.

Our main result in this section is the following theorem.

Theorem 1. Let A be a partial algebra, aec A% a={ay,---,a,, - ).
Define a binary relation 0, on P(7) as follows:

P=q(0,) if and only if there exist r € P®(7), p;, q; € P@(7) (0 =1 < k) such
thatpi(a’O’ iy @y, e ')and ‘Iz(ao, Crty Byt ) exist and

Pil@os s @y ) = @@y - @y - +)
and
P="(Po " Px-1)
q="(qo "> qe-1)-
Then ©; is a congruence relation of B ().
Remark. If we want to find a congruence relation ® of R@(r) such that

p(@gs - -+, ay, - )=q(@g,- - -, a,,---) implies p=q(®), then it is obvious
that our ®, is contained in ®. One does not expect, however, that @, is

1 The results of this section are taken from G. Grétzer [13].
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transitive. Thus the natural statement would be that the smallest such
congruence relation is the transitive extension of .

Proof. Q, is reflexive; indeed, let p € P@(r); then, by Lemma 8.5,

P = p(xo’. . -’xy,--.)‘
By Lemma 8.6,

P(xo,"',xy,"') = r(xyo:""xyk_l);
for some r € P¥(7). Thus
pP= T(X.,o, ] X.,k__ 1);

since x,, (@, - - -, @,, - - -) always exists, this verifies that p=p(0,).
It is trivial that ®, is symmetric. To prove the substitution property,
let P=f7(P0> Tt Pny—l), q=f1(q07 ) ‘In,-1) and

P = q(0,), 0=i<n,

Then

pi = (o’ s Pil,—-l))

q = (g’ - qtu—l);
and p,(ag, -+, @y, + - ), 4H(ag, - - -, @y, - - +) exist and

Pj'(ao, crry Oy, ) = qj‘(aO’ Ty ')'
Set n=mng+mn;+ - -+ +n,,_;. By the second part of Lemma 8.6, for
0<i<mn, there exists an n-ary polynomial symbol r;’, such that

rt(bo’ ) bn,—l)

’
=1 (CO’ ©0 s Cp +---+n,_1—1’b0" . "bn‘—licn EERRIY TER ‘>cn—1)
0 0

for any values b, and c;. Thus we have that

J— ! 0 (] -1 -
pi=n (PO sty Prg -1 "p37 "">P:{n,_1)-1)

for all 0 =i <m,.

Set

’ ’
r=f(r, -, 00, 1)
Then
0 0 1 1 -1 -1
r(PO s s Prg-1Pos ")Pnl—l"";Ps" P P:{,.y-l)-—l) =p

0 0 -1
7(qo ""’qno—l:""qu

sy q;:{,;;il)—l) =q,
establishing that

P = q(0,).
which was to be proved.

To establish the transitivity of ®,, we need a lemma.
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Lemma lT' Let P=f'r(P0’ ) Pny—l) and ‘l=fa(‘lo, Tt ‘In.,—1)- Then
P=q(0,), if and only if either p(@) and q(@) exist and p(@)=q(@), or y=28
and p,=q(0,). Moreover, if p=q(0,;) and p@) and q@) exist, then
p(@)=q(a).

Proof. Let us assume that p(@) does not exist. By the definition of O,
p and q have representations of the form

P = T(POI’ T P;c-l)’

q= 7('10', Tt ql,c—l):
where p;(@)=g¢,'(@), 0Si<k and re P®(7). Since p(@) does not exist,
r#x; for 0<i <k, and so

r= fv(l'o’ ) l'nv—l)-

Therefore,

p= fV(PO’ ) Pny—l) = fv(TO(PO,: Tt Pllc—l)’ R Tnv—l(POI’ T Pl’c—l))

and

q= fo('lo, ) ‘In,-1) = fv(ro(‘lo', T %-1), ) Tnv-l(‘lo', ) qllc—l))'

Thus y=v and 8= and so y=3§. From the equalities given above we con-
clude that

P =7Po’s s Pie—1)
and

G =g, ", qic-1)

for 1=0,---, k—1. Since p/=q/(0,) for 0<i<k and ©, has (SP), we
conclude that

PiEqi(Gd)’ 7:=0"">k_1>

which was to be proved. The other statements of Lemma 1 are trivial.

Now we return to the proof of transitivity of the ®,. Let q=p(®,) and
P=r(0,). It follows from the definition of ©,, that if ¢(@) exists, then
p(@) and (@) exist and ¢(@) =p(@) =r(@), hence q=r(0,).

Let us assume now that ¢(@) does not exist. Then p(@) and r(@) do not
exist. Let # be the maximum of the ranks of p, q, and r. We prove the
transitivity by induction on n. If n=2, we get a contradiction to the
assumption that ¢(@) does not exist. Let us assume that the transitivity
has been proven for maximum rank <n, and apply Lemma 1 to the two
congruences.

t This lemma and the conclusion of the proof of Theorem 1 are due to G. H. Wenzel;
the original proof was much longer.
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We get that
P = f£,(Po -, Pny-1)s
q =g > qn,-1),
r = f,(r, -+, 1, 1),

and q,=p(0,), p=ry(0O,) for ¢=0,---, n,_;. Since for a fixed ¢, the
maximum of the ranks of gq;, p;, r; is less than =, we get q,=r,(0,), and so
by (SP), q=r(0,). This completes the proof of Theorem 1.

Let %A be a partial algebra, @a=<{ao,---,a,, -, <4 and assume that
each element of 4 occurs once and only once in this sequence. We consider
the quotient algebra f(7)/®, and we denote by A* the set of elements
of the form [x,] 9.

Theorem 2. The relative subalgebra W*=<{A*; F) of RD(7)/O, 1is
1somorphic to A, and the correspondence

9t 0, [x,]0,

18 an isomorphism between U and A*.

Proof. As the first step, we prove that

[x,]0s = [x,]04
if and only if y=3.
Assume that [x,]0;=[x;]0,, that is,
x, = x4(0,).
Then by Lemma 1, z,(@) =x4@), that is, a,=a,, and so y=34.
Thus, we have proved that the mapping ¢ is 1-1; ¢ is obviously onto.
To conclude the proof of Theorem 2, we must verify that

T @oqs -5 @, ) = a5 (1)
if and only if
(%5100 - - -, [, 104) = [%4]Oq. (@)
(2) is equivalent to
F(Xags > Xs,, 1) = %4(0p). @)
Using the same argument as we used for the congruence
X, = X4(0q)

above, we can prove analogously that the two sides of (3) have only
trivial representations and then the equivalence of (1) and (3) follows.
This concludes the proof of Theorem 2.
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Theorem 2 gives another proof of Theorem 13.1, namely, it gives an
embedding of a partial algebra % into an algebra. While Theorem 13.1
gives the most economical construction, Theorem 2 gives the least eco-
nomical one, that is, R (7)/ @, is the largest algebra into which % can be
embedded, such that the image of % is a generating set.

We conclude this section by describing the structure of the algebra
B(7)/ 0.

First we define certain subsets 4, ,, and 4%, ,, (0=n<w, 0=y <o(7))
of this algebra as follows:

A’(O,O) = A*7

where A* was defined before Theorem 2;

Aoy = Ainsy Y {fs(bos  * +» bps-1) | bo, -+, bpy_1 € A 55}

ey = U @Aimyy | <myyd < (0, 8), i (n, 8)#<0,0),
where (m, y><{(n, 8 means that m<n or m=n and y<3d (thus the
{m, y> form a well-ordered set of order type w-o(7)).
Lemma 2. The following equality holds:
PO()[0; = U (A¢nsy |0 £ < 0,0 £ 8 < ofr)).

Proof. The following inclusions are trivial, by the definitions of 4 ,,,,
and A%, ,5:

!’ .

Anyy S Alney S Amsy I ¥ <3,
’ .

Aenyy € Aimey < A m,oy if n<m.

Take p € P@(r). We will prove by induction on the rank of p that
(P1Oz € Anoy 4)
for some n<w and 8 <o(7). If p=x,, then [x,]0; € A" ¢y. Let
P = §(Po " Pny-1);
and assume that (4) holds for each p;, that is,

[Pi]Os € A, 55

We set
n = max (g, -+, Ny, 1)
and
8 = max (8, -+, Op,—-1)-
Then

’ ’
Aoy S Anoy S Anr1,00 S Alnrryye
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Thus,
[p10z = f([Po]®s; - - -, [pny—1]®d) €Aty

which was to be proved.

To get our final result in this section, we introduce the following
notation.

Definition 2. Let B be a partial algebra, X = B and

Y = XU {f(@o, -, 1) |2 € X}, y < o(7).
We will write
Y = X[f,]
f f(@o, -+, @y, 1) =fs(o", - - -, 2, —1) € Y =X, §<o(r) imply that

’ ’
Y= avxo =g, Tpy-1 = Tny—1»

and if whenever {z,, - - -, %o, -1} E X, then fy(xo, - - -, Ty, _1) does not exist in
Y, for any p<o(7). If A and B are partial algebras, A is a relative subalgebra
of B and B=A[f,], then we will write B=A[f,].

Lemma 3. 4, ,,=A4%.,[f,]

Proof. We start with the following observation which follows imme-
diately from the definition of ®;:

(*) For any p € P@(7), p(@) is defined if and only if [p]®, € 4*.

Now to prove Lemma 3 we first observe that the first requirement of
Definition 2 follows trivially from Lemma 1 and (*). Now assume that
@0, -+ Ay 1 }E A%n,yy, but that fy(ao, -, a,,_,) exists in 4., ,,. By
Lemma 1 and (*) we get that fi(ag,:-.@,,-1) € A¢n,,y- Let a;,=[p;]0,,
P="F:(Pos - - *» Pny—1)- Since [p]O, € 4%, ,5, Wwe have that

[pl©Os € 4 (m,A>

for some smallest {(m, A><<{n,y>. By (¥) and the assumption that
{ag, -+, @ny -1} E A%n.yy, We have that {m, A>#<0, 0) so

[P1Oz € A(may — Almoay-

Hence p=fi(qo, -, q,,-1) for some [q]0,; € 4%, »y, Which implies by
Lemma 1 and (¥) that A= 6 and q;=p;(0;). Thus a;=[p,]0; € A¢n.rs S 4 n. vy
a contradiction. This completes the proof of Lemma 3.
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We now summarize what we have proved so far concerning the structure

of P (7)/0,:

Theorem 3. PB@(7)/ O, contains a relative subalgebra A* isomorphic to
the partial algebra A; if we start with A* and we perform two kinds of
constructions,

(i) taking the set union of the previously constructed sets,
(ii) constructing X[f,] from X,

then we get a transfinite sequence of increasing subsets of P (7)[©, such that
the union of all these subsets is the whole set.

It is obvious from Theorem 3 that B=%P*(7)/®, has the following
properties:

() ®B has a relative subalgebra 2+ isomorphic to % and 4+ generates
B;

(B) if fr(bm"'a bn,—l) =f6(b0’>"', b;lj—l) ¢A+, then y=8 a’nd
bo=bol, Tt bn7—1=b;17—1;

(')’) iffy(bo’ T bn,-l) GA+> then bo, o ',bn7—1 edr.

Theorem 4t. Conditions («)—(y) characterize B (7)] @4z up to isomorphism.

Proof. Let 9 satisfy («)-(y). Then B, ,, and By, ,, can be defined in B
as A,y and A%, ,, were defined in PB@(7)/®,, respectively.

Let ¢%,05 be an isomorphism between A+ and A*. If ¢, ,, is defined for
all {m, 8> <<m, y), set

‘P’<n,7) = U (‘P(m,é) | (m, 8> < <{n, 7>)

Then ¢, ,, will map B, ,, into 4%, ,,, and it is 1-1 and onto. If
x e B, =B ,[f,), then x=f,(x,, - -, %,,_1), where zo,---,x, _, are
uniquely determined elements of B, ,,. Set

U ’
TPin,yy = fr(xO‘Pw,v)’ ) xn,—l?’(ﬂ,v))'
Then

¢ =U (@ap|n < oy <o)
will be the required isomorphism. The easy details are left to the reader.
It should be noted that if A=<{0}; >, A is of type (1>, and D(’, A)= &,

then (a)—(y) is the usual Peano axiom system of natural numbers. If % is
arbitrary with D(f,, A)= @ for all y <o(7), then ®;=w, and thus («)—(y)

1 J. Schmidt (oral communication).
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characterize P@(r) up to isomorphism. In this special case, algebras

satisfying («)—(y) are called absolutely free algebras or Peano algebras in the
literature.

§15. EXTENSION OF CONGRUENCE RELATIONS

In this section we will prove a strong version of Theorem 13.3. Using the
notation of §14, we proved that 2% and UA* are isomorphic (Theorem 14.2).
Let us identify these two partial algebras; then we can say that
P@(7)/ O, is an algebra which contains U as a relative subalgebra.

Theorem 1. Let ® be a congruence relation of . There exists a congruence
relation ® of B@(1)/ O, such that © = O.

According to Theorem 14.3, it suffices to prove the following two lemmas.

Lemma 1. Let A be a partial algebra, A= ) (X,|y<«), and X, =X,

if o<y
Let © be a congruence relation of X, such that

0%, = 0r
if yo<y1.
Then there exists a congruence relation © of A such that
®X = @7

Y
for each y < a.

Lemma 2. Let U be a partial algebra and B a relative subalgebra of .
Assume that A =B[f,] for some y <o(7). Then to every congruence relation ©

of B there corresponds a congruence relation ® of U such that ©,= 0.

Remark. Let us note that Theorem 1 is stronger than Theorem 13.3
since we extended % to an algebra such that every congruence relation of
A can be extended—not merely a given one.

Theorem 1 was first given in G. Grétzer and E. T. Schmidt [2], but in a
weaker version; namely, in that paper it was proved that every partial
algebra can be extended to an algebra which satisfies the requirements of
Theorem 1 but it was not proved that this algebra can be represented as
PBD(7)[B;. As a matter of fact, that version follows directly from Lemmas
1 and 2; for that we do not need the investigations of §14 at all. A minor
difference is that in that paper a third construction was also needed to
get the algebra (besides the constructions given by Lemmas 1 and 2), but
it is easy to see that it can be eliminated.
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Proof of Lemma 1. Set

0 =U 0]y < a)

It is routine to check that © is a congruence relation. As an illustration,
we prove the transitivity of ©.

Let a=b(0©) and b=c(0). Then <a, b}, <b, c) € |J (07| y <a). Therefore,
{a, by € O%, (b, c) € O". Suppose, for instance, that y,<y,. Then

<a, b, b, ¢> € On

and thus by the transitivity of 0”1, {a, ¢) € ®*:1. The proof of reflexivity,
symmetry, and the substitution property is similar.
Finally, let us compute Oy, ;

Oz, = 0N (X,xX,) = U (0|8 <a)n(X,xX,)
U (0N (X,x X,)| 5 < o)
= (®°ﬁ(X,><X.,)|'y <d<aq)
=U(04]ly=8 <9

=U(®7|y§8<a)
= 0,

A

which was to be proved.

Lemma 3. Under the conditions of Lemma 2, for a fixed O, define a
relation @ on A as follows:

(i) a=b(D), a, b € B if and only if a=b(0O);

(ii)a=b(P), ac B,b¢ B (b=f,(%o, -, %s,-1)) f and only if there
exists @ u=f,(Yo, - -, Yn,-1) € B such that a=u(0), z;=y(0), 0=5t<n,;
and the symmetric condition holds for a ¢ B, b € B;

(iii) a‘Eb(q)): ab ¢ B (‘I:fy(-’”o’ T xny—l)» b=fy(3/o, Tty ?/n,—1)) ’Lf and
only if
(iii;) 7;=y,(0),0=¢<n,, or
(ilig) thereexistu=f,(ug, - -, Un,_1) € B, v=F,(vg, -+, vp,_1) € B such
that r;=u,(0), v;=y,(0), 0=t <n,, and u=v(0).

Then ® is a congruence relation of U.

Let us note that Lemma 3 implies Lemma 2 since ®;= 0 is equivalent
to (i).

The following diagrams illustrate rules (i)—(iii), in case f,=f is binary.
Dotted lines denote congruence modulo ® and solid lines denote con-
gruence modulo ®.



Rule (i)

Rule (ii)

Rule (iii;)

\O b=1y,.y,)

Rule (iiiy)

a=f(xq,X,)
o\ 01

N
N

N0 b= f(yg.y,)

u="f(uy,u;) #B)

v ="~F(vy.v;)

Yo

93



94 CH. 2. PARTIAL ALGEBRAS

Proof of Lemma 3. @ is reflexive since a=a(®) follows from (i) if
a € B and a=a(®P) follows from (iii;) if @ ¢ B. Since all conditions are
symmetric, ® is symmetric. To prove the substitution property, assume
that

a4 = bt(d))s 0<i< Ngy

and suppose that

Sol@o, -+ 5 @y —1) and  fy(bo, - - -, bn,,—1)
exist. If 8 #+y, then this implies

Qgs =+ *5 Ay~ 15 bos - -5 bno—pfo(“o, Cey “n,,—l)’fo(bo: sy by, 1) € B;

thus’ by (1)’ aiEbi(Q) and so fé(a’os ) a’na—l) Efo(bm ) bna—l)(G))
which, by (i), implies the same congruence modulo ®.
If y=4, then a;, b€ B and a;=b,(0). Then we get the congruence

fy(“o’ T a’ny—l) = f'y(bos R bny—l) ((I))

by (1) iffy(a/o’ T a’n,—l): f'y(bOa Tt bn,—l) € B; by (1111) iffy(aos T a’ny—l)a
fr(bO: T bn«,—l) ¢ B: andiffv(“o:' t an,—l) EB’ fy(bo’ ] bny—l) ¢ B (a’nd
in the symmetric case), then we have to use rule (ii) with

u =f7(a0>’ : ':an,‘l)'

All that remains is to prove the transitivity of ®. To simplify the com-
putations, let f=f, be a binary partial operation, as in the diagrams.
Assume that a=b(®), b=c(®). We will distinguish eight cases according to
the positions of a, b, ¢ with respect to B.

(1) @, b, c € B. Then, by (i), a=b(0), b=¢(0). Thus, a=¢(®) and, by
(1), this implies a=c(D).

(2) a,be B, c¢ B, c=f(co, ¢;). Then by (i) and (ii), a=b(0) and there
exists u = f(ug, 4;) € B such that co=ue(0), ¢;=u,(0), and b=u(0).
Then a=wu(0) and thus (ii) implies a = ¢(®), using the auxiliary element u.

(8) aec B,b¢ B,ce B,b=f(by, b;). Then by (ii) there exist uw=
f(ug, uy) € B, v=f(vo, v;) € B such that a=u(0), uo=by(0), u;=b,(0),
and by=v0(0), b;=v,(0), and v=c(0). Then u,=v,(0) and u,=v,(0);
thus, u=f(ug, u;)=f(vo, v1)=2v(0). Thus a=u=v=¢(®) which implies
a=c(0), and by (i) we obtain a=c(P).

(4) ae B, b¢ B, c¢ B, b=f(by, by), c=f(co, ¢;). Then by (ii) there
exists u=f(uo, ;) € B such that a=u(0), uy=b,(0), u,=b,(0). We dis-
tinguish two cases according to b=c¢(®) by (iii;) or (iiiy):

(41) bo=0o(0©), by=¢,(0).
(4,) There exist v=f(v,, v;) € B, w=f(w,, w,) € B such that
bo=vo(0), by =v,(0), we=¢o(0), w; =c,(0) and v=w(O).
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In the first case, (4,), uo=co(®) and %, =¢,(0) and thus by (ii) we get
a=c(®D), using the auxiliary element u.

In the second case, (43), uo=v0(0), u;=v,(0) and thus w=Ff(uo, u,)
=f (v, v;)=v(0). Therefore a=u=v=w(0) and so a=w(®). Thus by
(ii) we get a=c(®), using the auxiliary element w.

(56) a ¢ B,be B, ce B. The proof is similar to that of (2).

(6) a¢ B,be B,c¢ B,a=f(a,, a,), c=f(co,¢,). Then, applying (ii)
twice, we get the existence of u=f(u,, 4,) € B and of v=f(v,, v;) € B such
that b=u(0), uo=ay(0), u;=a,(0) and b=v(0), vo=cy(0), v, =¢,(9).
Then w=v(0®) and thus a=¢(®) by (iii,), using the auxiliary elements
u and v.

(7) a ¢ B,b ¢ B, c € B. The proof is similar to that of (4).

(8) a,b,c ¢ B, a=f(a’0’ a,), b=f(b0a bl)’ C=f(co’ €1)-

We have four subcases to distinguish, according to which of (iii;) and
(iii,) give us a=b(®) and b=c¢(P).

(8,) We apply (iii;) twice. Then a,=by(0), a; =b,(0), by=ce(0),
b, =¢,(0); thus we get a=c(®) by (iii,).

(8,) We first apply (iii,) and then (iii,). Then a,=by(0), a, =b,(0),
and there exist w=f(uy, %,) € B, v=f(vo, v;) € B such that
bo=uo(0), by =u,(0), vo=co(0), v;=¢,(O) and u=v(®). Then
ao=uo(0), a,=u,(0); thus, by (ili;) a=c(P), using the
auxiliary elements % and v.

(83) We first apply (iii,) and then (iii;). The proof is similar to (8,).

(84) We apply (iii,) twice. Then there exist u=f(uq, u;) € B,
v=f(vy, ;) € B, w=f(wy, w;) € B, 2=f(20, 2,) € B such that
ay=ug(0), a;=u(0), u=v(0), v,=by(0), v,=b,(0),
bo=wo(0), by=w,(0), w=2(0), zo=co(0), z,=c¢,(0). Then
vo=wo(®) and v, =w,(0), and so v=f(v,, v;)=f(w,, w,)=
w(®). Consequently, u=v=w=2(0); that is, u=2(0) and
thus we get a=c(®P), using (iii,) and the auxiliary elements
% and z.

This completes the proof of Lemma 3.
To conclude this section, we give another version of Theorem 1.

Theorem 2. Let U be a partial algebra, © a congruence relation on A,
and let @=<{ag, -+, @y, -+ Yy, be a sequence of type o of elements of A,
containing each element of A exactly once. Then there exists a congruence
relation @ of P (r) such that ® = O, and x,=x,(D) if and only if a,=a,(0).

Theorem 2 is simply Theorem 1 combined with the second isomorphism
theorem (Theorem 11.4).
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§16. SUBALGEBRAS AND HOMOMORPHISMS OF PARTIAL
ALGEBRAS

In this section we will review some of the results of Chapter 1 within
the framework of partial algebras.

Since the proofs in most cases remain the same we will just rephrase the
results. Some further results will be reviewed in the Exercises.

Let A be a partial algebra and let () denote the family of all subsets
B such that {(B; F') is a subalgebra of % with the void set added if there
are no nullary partial operations (defined in %). Then Theorem 9.1
remains true; in Lemma 9.3 we have to add the condition that
plho, - -+, hy ) is defined and equals a. The only result which fails to hold
for partial algebras is Lemma 9.1.

However, congruence relations of partial algebras behave differently
from congruence relations of algebras.

Lemma 10.1 remains valid and we can add that it is valid not only for
congruence relations, but also for strong congruence relations. Lemma
10.2 is in general false for partial algebras, but Corollary 3 of Lemma 10.2
and Lemma 10.3 are valid. Of course, we must change the proofs, since
they cannot be referred to Lemma 10.2. Since we needed only Lemmas
10.1 and 10.3 to prove Theorems 10.1 and 10.2, they remain valid.

We now proceed to prove for partial algebras the converse of Theorem
10.2.

Theorem 1 (G. Gritzer and E. T.Schmidt [2]). Let U be a partial algebra
and let C(A) denote the system of all congruence relations of A. Then C(A) =
CA); £ 1s an algebraic lattice. Conversely, if L is an algebraic lattice, then
it s tsomorphic to some E(A).

Proof. The first part of Theorem 1 is just a restatement of Theorem 10.2
for partial algebras. To prove the second statement, let € be an algebraic
lattice. Represent this algebraic lattice € as (&), the lattice of all ideals
of a semilattice &={8; v ) with 0 (Theorem 6.3).

We construct the partial algebra as follows. Let 4=S. For a,be S,
define a binary partial operation f,, so that D(f,,)={<a, b>, <0, 0>},
Savla, b)=a v b, f,,(0, 0)=0. Further, for every a, b € S such that b<a we
define a unary partial operation g,, so that D(g,)={a, 0}, g.,(a)=b,
9ar(0)=0.

For every a, b €S such that a#b, define a unary partial operation &g,
such that D(h,,)={a, b} and h,.(a)=a, h,,(b)=0.

Consider the partial algebra A= {4; F), where F denotes the collection
of all these partial operations.
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Consider an ideal I of the semilattice & and define a binary relation 9,
on A as follows:

=y(®, ifandonlyif =y or =z yel.

We shall now verify that ; is a congruence relation of . It is clear that
0, is reflexive, symmetric, and transitive.

To prove the substitution property for f,,, assume that z,=yy(®;) and
x,=y,(0;), and that f,,(o, %) and fo,(yo, y1) exist and (o, Yoy # {21, Y1
Then <=, z,)=<a,b) and {yo, ¥,)=<0,0) (or <y, y,>=<a,b) and
{#y, 1> =<0, 0). Then the conditions mean that a, b € I. By applying f,,,
we get a v b=0(0®,), which is true since 0, avbe I.

Similarly, the substitution property for g,, is satisfied since a € I, b<a
imply b€ I; the substitution property for h,, is satisfied since a#b,
a=b(0,) imply a, 0 € I.

Thus we have proved that:

(i) ©®;is a congruence relation.
The following statement is trivial:
(ii) 0,0, if and only if I=J.
(iii) Let ® be any congruence relation on 2 and define

I = {xlx = 0(0)}.
Then I is an ideal.

To prove (iii), let a, b € I. This means that a=0(0), b=0(®). Therefore,
avVvb=f,(a, b)=f.,(0,0)=0(0)and soavbel.

Let a € I, b<a; then a=0(0) and thus b=g,,(a)=g,,(0)=0(®) and so
b € I, which completes the proof of (iii).

(iv) Let © be a congruence relation, I ={z | z=0(0)}. Then 0= 0,.
0, £ 0 is trivial. To prove that 0,= 0, let x=y(0), x#y. Then
T = hzy(x) = hxy(y) = O(@)’

that is, € I. Similarly, y € I. Thus, z=y(0,).
Statements (i), (ii), (iii), (iv) prove that the correspondence I — ©;

is an isomorphism between J(&) and €(), completing the proof of
Theorem 1.

Now we consider the problem of defining the concept of a homomorphic
image of a partial algebra. Let 2% and B be partial algebras, and let ¢ be a
homomorphism of % into 8.

Then the relative subalgebra (Ag; F) of B is not necessarily isomorphic
to the quotient algebra (4/e,; F', not even if ¢ is 1-1 and onto. Consider
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the following trivial example. Let 4A={x}, B={y}, F={f}, r={),
D(f, A)= o, D(f, B)={y}, and f(y)=y, ¢: £ — y. Then ¢ is a 1-1 homo-
morphism of (4; F) onto (B; F) but <4; F)#<{A¢; F) since f is not
defined in {4; F), whereas it is defined in (Ap; F'>. The reason for this is
that only

D(fw We < D(fw Ap)

holds in general, and we do not always have equality. Therefore, we
define B to be a homomorphic image of U if there exists a homomorphism
¢: A — B which is onto and full.

Note that an isomorphism is always a full homomorphism.

Adopting this definition, we encounter no difficulty in proving the
homomorphism theorem for full homomorphisms. Also, the isomorphism
theorems carry over, without any difficulty, the first isomorphism theorem
(Theorem 11.2) for strong congruences, and the second isomorphism
theorem (Theorem 11.4) for all congruences.

We can then define endomorphisms, full endomorphisms, and strong
endomorphisms and consider the sets

E®), Ep(¥), and Ey()

of all endomorphisms, full endomorphisms, and strong endomorphisms of
the partial algebra %, respectively.
Then E(A)2 Ep(A)2 E4(A).

Lemma 1. (E(N); >, <Ep(N); >, and {Eg(N); > are semigroups with
unit element and the first contains the second and third and the second contains
the third as subsemigroups.

Finally, we will prove an embedding theorem for partial algebras which
is similar to Theorem 13.3 and which characterizes the strong congruence
relations.

Theorem 2. Let U be a partial algebra and let ® be a congruence relation
of A. The congruence relation © is strong if and only if A can be embedded in

an algebra B and © can be extended to a congruence relation ® of B such that
[@]® = [a]® forall acA.

The algebra B can always be chosen as P@(7)/ 0O, (see Theorem 14.2).

Remark. This condition means that ®,= ® and any equivalence class

of © in 4 is also an equivalence class of ® in B. Theorem 2 was announced
by G. Gritzer in the Notices Amer. Math. Soc. 13 (1966), p. 146. A direct
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proof of Theorem 2 without the last statement can be given using the
construction of Theorem 13.1.
Proof. We first prove that if such an embedding exists, then © is strong.

Recall that a congruence relation © is strong if whenever f,(ao, - - -, @,, 1)
€ 4 and a;=b,(0), then f,(by, - - -, b,,_,) is defined in A.
Since f,(b, - - -, b,,_;) is always defined in B, all we have to prove is that

it is in 4. Set a=f,(ay, - - -, a,,_,); then by assumption (@]® =[a]®.

Since © is an extension of @, we have that a,=b,(0) and thus

oo, -5 @n, 1) = fylbo, -+ -, bn.,‘ﬂ(("_)):
that is,
Fibos -+, by, 1) €[al® = [a]® < A.
Thus,
Jilbos -5 bay 1) € 4,

which was to be proved.
Now assume that © is a strong congruence relation and put

B = s»B(o‘)(")/(;—)a-

We extend ® to B using Lemmas 15.1 and 15.3.

We prove that if we assume that © is a strong congruence relation, then
[@]® =[a]® holds for a € 4.

Suppose that in Lemma 15.1, (4,; F) is the partial algebra we start
with and that we know that for each y <«,

[a]®° = [a]®?.
Then

[@]® = U ([a]0" ]|y < «)
= U ([@]0°]y < «)
= [a]0°,

so that this property is preserved under the construction of Lemma 15.1.

Now consider the construction in Lemma 15.3. Lett a € B and assume
that [a]© #[a]®. Then there exists a b ¢ B such that a=b(®). By Rule (ii)
this means that b=f(x,, ;) and that there exists a u=f(y,, y,) € B such
that a=u(0), yo=2,(0) and y,=z,(®). The last two congruences to-
gether with the existence of f(y,, y,) imply (since © is strong) that
f(xo, ;) exists in B, that is, b € B, which is a contradiction. This com-
pletes the proof of Theorem 2.

1 We use the notation of Lemma 15.3.
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§17. THE CHARACTERIZATION THEOREM OF CONGRUENCE
LATTICES: PRELIMINARY CONSIDERATIONS

Let A=<4; F) be a unary partial algebra and let 8 =(B; F) denote the
algebra R@(7)/ @, of Theorem 14.2. B contains A as a relative subalgebra
and A4 generates 8. If g and h are unary operations, we will write gh(x) for
g(h(x)) and similarly for » unary operations. If b € B, then we can always
represent b in the form

*) b=g,---ga), acA and g;eF*

where F*=F U {e} and e is the identity function on 4, that is, e(a)=a
foralla e 4.

A representation (*) of b is reduced provided b € 4 and the representation
isb=e(b),orb ¢ 4 and a ¢ D(g,, A).

It is obvious from Theorem 14.3 that every element of B has a reduced
representation.

Lemma 1. The reduced representation is unique, that s, of g, --- g,(@)
and hy - - - hy(a') are both reduced representations of b € B, then a=a’, r=s,
and gl=h1, Tty gr=hr'

Proof. This follows easily from Theorem 14.4. A more direct proof is the
following.

Let b e B; thenbe 4, ,, for some n<w, y<o(r) (Lemma 14.2). We will
prove the statement by transfinite induction on (n, y). The statement is
known for 4 =A%, ¢,. Assume that it has been proved for all elements of
A (.5 With {m, 8) <{(m,y)> andletbe 4, ,.

We can assume by the induction hypothesis that b ¢ A%, ,,. Thus, if
b=g,---¢,(a) is any reduced representation of b, then g,=f,. Let b=
g, -+ - ¢ (a’') be another reduced representation of . Then, again, g,"=f,.
Thus, by Definition 14.2 and Lemma 14.3, f,(92 - - - 9,(@))=f,(92" - - - g5'(@'))
if and only if g, - - - g,(@)=g, - - - g;'(a’). Now we can apply the induction
hypothesis to this element. This completes the proof.

Summarizing, we have that every element of B has a reduced repre-
sentation and equality of these representations is formal equality.

Let us assume that there are in F' three unary partial operations g, g,
and g3 such that D(g,, %)={a}, D(gs, A)={b}, D(g2, )=, g:(a)=c,
gs(b)=d, a,b,c,de 4, and a # b. Form

A" = Alg,] U Algz] U A[gs] = B.

We define in A"={A4"; F) a relation ®: x=y(®P) if and only if z=y or
z=g,(b), y=95(a) or x=g5(a), y=9.(b), or x=g,(b), y=9s(a) or x=gs(a),
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y=go(b). Obviously, ® is a congruence relation. Set A’ =%A"/®. By identi-
fying [«]® with x, we get the diagram for %’. Note that D(f,, A')=
D(f,, %) if f,#g, and D(g,, A')=A4,1=1,2,3.

—g,b)=g,@

\
——g,(b) =g,

Let © be a congruence relation of . © is admissible provided either
a#b(0) or a=b(0) and c=d(0).

Lemma 2. Let © be a congruence relation of U. Then © can be extended to
A’ if and only if O is admissible.

Proof. Assume that ® can be extended to U’, that is, there exists a
congruence relation ® of A’ such that ®,= 0. If a=5(0), then a=5b(D),
and so c=g¢,(a) =g,(b) =g2(a) =g2(b) = gs(a) =gs(b) =d(®), that is, c=d(0),
which was to be proved.

Assume that © is admissible. Define a binary relation ®* on 4’ as
follows: x=y(0*) if z,yc A and z=y(0), or z,yecg(Ad) for some 3,
z=g(&), y=gu(y), &',y € 4, and z'=y'(0).

We claim that the transitive extension ® of ®* is a congruence relation
and ©,=0.

Let us agree that go(x)==, for z€ 4 and that the elements g,(a) and
g:(b), =1, 2, 3 are called the extreme elements of A’. If n=1 (mod 4),
0<i<3, then g,(4) stands for g¢(4). Then it is obvious that
gi(A4) N g, 1(A4) consists of one element which is an extreme element.

Since © is transitive on 4, ©* is transitive on each g,(4). This implies
that if u, v € A’ and u=v(®), then a nonredundant sequence u==x,,- - -,
x,=v such that z;_, =z,(®*) consists of » and v and of extreme elements.
Since an extreme element cannot oceur twice in a nonredundant sequence,
we deduce that n £5.

Suppose that u, v € g;(4) and u=v(P). Let u=x,, - -, 2,=v be a non-
redundant sequence, as before. If n#1, we may have n=3, 4, or 5 (if u
or v is an extreme element the cases n=3 or n=4 may occur). By possibly
adding a slight redundancy, and by symmetry, we may assume that n=5,
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xy, 4 € gi(4). Then g;(a)=g,(b) (O*) for j=1,2, or 3, so a=b(0®) which
implies that g;(a)=g;(b) for all t=1, 2, 3 and c=d (©®). Thus, we have u=
x, =x,=0(0%), that is, u=0v(0*).

This proves that ®, .= 0%, 4 and, in particular, ®,= 0. It remains
to prove that ® is a congruence relation. ® is obviously an equivalence
relation. The substitution property for all f, #g; follows from ®,= ® and
for the g; from the definiton of ®*. This completes the proof of Lemma 2.

Corollary 1. Let ® be an admissible congruence relation of A and @ the
smallest extension of O to A'. Then u=v(D) if and only if, for some i, one of
the following holds :

(i) u, v e g, (4) and u=v(O*).
(ii) w € gi(A), v € gy 1(4) and for {w}=g,(4) O g,.,1(4), we have u=a( %)
and x=v(0O*) (and the symmetric case).
(iii) w € g,(A4) and v €g,5(4) and for {x}=g,(4d) N g;,1(4) and {y}=
Fi+1(4) N gy, 2(A) we have u=zx=y=v(0*), or the same condition for
{}=g:(4) N gi_1(4) and {y}=g,_1(4) N g;_5(4).

Proof. We already know the cases (i) and (iii). To prove case (ii), it is
enough to observe that in this case there are only two nonredundant
sequences, namely, the one given in (ii) and w,g;(4) N g;_,(4),
gi-1(4) N gi_o(4), 9;_o(A) N g;_s(a), v. In the latter case, we will have
g;(a)=g;(b)(®*) for j=1,2 or 3. Thus, a=b(0®) and all the extreme
elements are congruent to one another and to w and ». In particular,
u=x=v(0*) for the x given in (ii).

fu=xy, -, z,=v and z;_; =7,(©*), then let us call this a ®-sequence
connecting u and v.

Corollary 2. In cases (i) and (ii), the shortest ®-sequence connecting u and
v 18 unique, in case (iii), there are one or two shortest O-sequences.

Lemma 3. Let © be a congruence relation of . Then there exists a smallest
admissible congruence relation @°= ©.

Proof. If a#bH(0), then ®= O° and if a=5b(0), then B°=0 v O(c, d).

If © is an admissible congruence relation of %, then ® will denote the

smallest extension of ® to %A. Note that ® is described by Corollary 1 to
Lemma 2.

Lemma 4. Let u,v € A’. Then there exists a smallest admissible congru-

ence relation ®(u, v) of A such that u=v(D(u, v)).
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Proof. We distinguish three cases as in Corollary 1 to Lemma 2. Let ©
be an admissible congruence relation such that u=v(0).

(1) u, v €g,(A4), that is, u=g,(u’) and v=g,(v'), w’, v' € A. Then u=v(0)
if and only if w=v(®*), which is equivalent to «'=v'(0), that is,
O(u’, v') < ©. This implies that in this case

(I)(u, ’U) = (@(ul’ v'))O. (1)

(ii) w € gy(4),v € gi1(A4), u=g(w'), v=9,,1(v). Let {a} =g.,(4) N g;+1(4)
and z=g,(x')=¢,,,(¢"). Then u=v(®) if and only if u=x(0*) and
x=v(0%*), which implies that

D(u,v) = (O, 2') v Oz, v))°. (2)

(iii) u € gy(4), vE G4 2(A4), u=gyu'), v=¢;,4(v'). We distinguish two
subcases.

First, let i=0 (the case i=2 is similar). Then u=v(0) if and only if
u=c=g,(a)=g,(b) =g5(a) =v(0%), or, u=d=g;(b)=gs(a)=g,(b)=0(0*).
Let

0, = O(u,c) v Oa,d) v O(a, v')
and
®, = O(u,d) v O(a,b) v O(b,).

Then either ®, < ® or 0©,=< 0. Thus, if we prove that ©®,°=0,° then
®(u, v)= 0,° will be established. Observe that a=b(0,°); thus, c=d(0,°).
Therefore, d=c=u(0,°); that is, O(u, d) < 0,°.
Since (b, v')< 0,° we have 0,=<0,° Similarly, 0, =<0,°% thus,
0,%°= 0,°. Therefore, in this case,
D(u,v) = (O, ¢) v Oa,b) v O(a, ). (3)
Second, let ¢=1 (the case =3 is similar). Just as in the first subcase,
we form the congruence relations ©,= O(u’, b)Vv O(a, b) v O(a, v') and
O,= 0, a)V O(c, d)v O(b, v') and again we have that u=v(®) implies
0,50 or 0,<0. We will establish 0,°<©,°, which will prove
D(u, v)= 0,0
Indeed, u'=b=a(®,); thus, O, a) < 0,°. Since ©,° is admissible and
a=b(0,°, we have O(c, d)< 0,° Finally, b=a=v'(0,°; thus, O(b, ")
< 0,° Thus, ©,=< 0,° which implies that 0,°< ©,°. Thus, in this case,
D(u,v) = (O, a) v O, d) v O, v"))°. (4)
This completes the proof of Lemma 4.

We will now generalize the results of Lemmas 2 through 4.
Consider a partial algebra &=<8; F), where

F={gMMieA,i=1,23U{f,|ceQ}
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and D(g,")={a’}, D(gs")={"}, D(g;")= 2, g:*(@")=c", g5"(b")=d" and
D(f,)=S. In other words, every partial operation is either a member of a
pathological triplet, g,, g5, g5 discussed above, or it is a unary operation.
We call the congruence relation ® of & admissible if for any A € A, either
a* b 0) or a*=b*(0) and *=d*0). We assume that a* # b* for Ae A.

Lemma 3'. Let © be a congruence relation of {S; F). Then there exists a
smallest admissible congruence relation ©°= @.

Proof. Define @,=0, 0;,,=0,v \ (0(c", d*)| A€ A and a*=b"(0))).
It is routine to check that @°= \/ (0,|i<w).

Let G* be the partial algebra which is constructed from & using g,*,
g2, and gg* the same way as A’ was constructed from 2 using g,, g5, and gs.
Assume that all the &* are constructed in such a way that S* N §'=38 if
AveA, A#v.

Define 8'= [ (8*| A € A). Defining the operations on §’ in the natural
way, we get the partial algebra &'.

Let © be a congruence relation of &. It is obvious that if ® can be
extended to &', then ® is admissible. If ® is admissible, then it has a
smallest extension ®, to (S*; F) by Lemma 2. (Note that we used the
obvious fact that if ® is admissible in the new sense, then it is admissible
for any fixed A € A in the old sense.)

We define a relation @ on S’ as follows: let u=v(®) mean u=v(®,) if
u,ve8; if ueS* and ve S, \,ve A, A#v, then let u=v(P) mean that
there exists an x € § such that u=z(®,) and x=u(D,). ® is well defined
because if u, v € S* and u, v € S* with A# X, A, X’ € A, then u, v e S* N SN
=8. Since (D,)s=(D,)s= 0, we get that u=v(P) means u=v(®), which
does not depend on A. @ is obviously reflexive and symmetric, and the
substitution property follows from the simple observation that for any
u, v € S’ and operation f, if f(u) and f(v) are defined, then there exists a A
such that u, v, f(u), f(v) € S*. ® is also transitive. Indeed, let u € S™,
v €S2, w € 83, and u=v(D), v=w(D).

First, let A, # A,. Then there exists an x € § such that u=2(®,,) and
r=v(D,,). If A;= A3, then u=2(D, ) and x=w(D,,), establishing u=w(®P).
If A;# A5, then there exists a y € S such that v=y(®,,) and y=w(D,,).
This implies that x=v=y(®P,,) and since x,y e S, we have xz=y(0).
Consequently, x=y(®,,). Thus, x=y=w(®,,). We proved that u=z(®,)
and x=w(®,,); thus, w=w(®). The case A, =A, can be discussed as was
the case A= A;.

By definition, @ is an extension of ©. It is also obvious that again ® is
nothing more than the transitive extension of ®@*. (®* is defined for &’ the
same way as it was for A’.)
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Theorem 1. A congruence relation © of & can be extended to &' if and
only if © is admissible. If © is admissible, the smallest extension of © to &'
18 the transitive extension of ®*. Let u, v e 8'. Then there exists a smallest
admissible congruence relation ®(u, v) such that u=v(D(u, v)), where B(u, v)
denotes the minimal extension of ®(u, v) to S'.

Proof. We have proved all but the last statement of Theorem 1. It has
also been established for u, v € S* for some A € A.

To establish the last statement in the general case, it is useful to
introduce the following terminology.

Let u, v e 8" and let o:u=ux,, - - -, 2,=v be a sequence of elements having
the property that, for each i, z,_, and =z, €g¢(S) for some Ae A and
J=1,2,3. Then z,_,=g={_,) and z,=g\(x,*), where x;_, and x,* are
uniquely determined elements of S. We form the congruence relation

( V (G)(x;—l’ (E{*)I’l:=1, ] n))o

and we call this congruence relation @, the congruence relation associated
with the sequence o. We will again call o a @-sequence if z,=x,,,(0*) and
o is nonredundant. a is an extreme element of 8’ if it is an extreme element
of some S*. It is obvious that all members of a ©-sequence, except the
first and last one, must be extreme elements; any two consecutive mem-
bers are in some ¢;*(S); and excepting the first and last elements there are
at most two consecutive extreme elements of $* in it; if any sequence ¢ has
these properties, we will call it a path.

If © is an admissible congruence relation of & and o : u=2x,, - - -, ¥, =v
is a @-sequence connecting u and v, then ©°< ©. Hence, to prove the

existence of the smallest admissible ® such that «=v(®), we have to find
all paths o,, - -between u and v and we have to prove that there is a
smallest congruence relation of the form @¢.

Let T* denote the set g,*(S) U g, (S) U ¢g5M(8).

Now let ueS*, ve 8, u,v¢8, A # v, and take a path o connecting u
and v. The sequence o breaks up into three parts, o, in T, 0, in S, and o,
in TV let o) tu=w,, - - -, Ug; 05 : Ug, Vg T3 : Vg, - - -, T, =v. Then u, is ¢* or
d* and v, is ¢” or d”. If ¢* or d* is not u,, then denote it by u, and similarly
for v,. Further, let o, denote the path between w and u, which does not
contain u,.

(1) If o, contains two extreme elements, then for the sequence ¢’ which
consists of o,"; u,, vy; and o3 we have 7 < Q7.

Indeed, by assumption, g*(a) and g*(b) are in o,; thus, a*=b"(0°).
Hence c*=d*(07), that is, u; =u,(©°) and @ < ©7. This, of course, implies
that 07 < ©°.

Therefore, we can find a o connecting % and » such that ©7< 0% for
any path ¢’ connecting % and v, in the following way: if » € ¢,*(S), then
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choose ug=c"; if u € g;M(8), choose u,=d*; otherwise, let u,=c* or d*. We
choose v, similarly. Then let o,(resp. o;) be the path connecting « and
u, (resp. v and v,) and let o equal o4; ug, vo; 05. This completes the proof
of Theorem 1.

In the next step we want to extend the result of Theorem 1 to the
algebra B which we get from &’ by Theorem 14.2.

Lemma 5. Every element be B,b¢ 8, has a representation of the form
(**) b=nhy--- hngiA(a’)’

where n21, hy,---, h, e F, and a € 8. If a#a’, a#b*, and a#c’, a#dY,
for all ve A, then the representation (**) is unique. In general, if b=
hy' - -hy'gy (a') is another representation of b, then for some p with0<p=<n,
0=p=<mwehaveh,=h, fort<pandh,,, - -hg(@)=h,., - -h, g9, (@)eS".

Proof. Trivial from Lemma 1 and the construction of S’.

Let T (h,y, - - -, h,) denote the set of all elements of the form
hy - - - hagNa)
for a € § and
TMhyy s by) = T Mbyy - oy ha) O TRy - o, ) U TgMhy, - -, By).
In case n=0, T will stand for g*(8S).
Corollary 1. T hy, - -+, h,) and TP, ((hy, -, h,), t=1,2, have exactly

one element tn common, namely for 1=1,hy - - h,g, (O*)=hy - - - hyg*a?),
for i=2, hy - hyg (O =hy - - - hugst(a?).

Corollary 2. Let be T hy, - - -, h,); then b has one and only one repre-
sentation of the form
b=hy - hgMa), ach.

In other words, if we already know that b € T} hy, - - -, h,;), then with
Sfized by, - - -, by, Aand ¢ in (**), a is uniquely determined.
Let us introduce the following notation:

Se=28,-+,8, = {Mx)|x€S,_,, he F*}.
Then S,<8,< --- =8,< --- and
U(Slli = 1,2,--.) = B_

Corollary 3. T*h,, - - -, h,) and S, have one or two elements in common,
namely’ hl e hn(c}\)"—‘hl e hngl)\(a’)\) and hl et hn(d}\)=h1 te hngah(bh)'
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Lemma 6. The following equality holds:

S =820 U (TMhy, -+, hyoy) [A€A By, - hyoy € F).

Proof. Observe that ;=S8 {J (T*| A€ A). Hence,

S, =8, U {h(z)|x €8y, he F}
= 8,0 U (hiz) |z T | Ae A, he F)
= 8,U U (MTY|Ae A, heF)
= 8,0 U (T"R) | Ae A, he F).

This proves the statement for n=2. The proof of the general case is
similar.

Next we define the relation ®* on B. Let ® be an admissible congruence
relation of &; let u=v(0*) if u, v € Sand u=v(0), or u,ve T hy, -, h,)
and u'=v'(®), where u',v" are given by wu=h, - kg u') and
v=hy - hgv').

Then ©* is well defined; indeed, » and v uniquely determine »’ and v" if
hy,---, h,, Aand ¢ are fixed (Corollary 2 to Lemma 5). Furthermore, if
u,v € TMhy, -+, h,)and alsou, v e T;*(gy, - -+, 9p), With A#v or i #£7, then
u=w, since if u#v, then one of the representations u="h, - - - h,g;*(u’) or
v=hy - h,g (v') is reduced.

Lemma 7. ©O* s reflexive and symmetric. It is transitive on S and on
each TMhy, - -+, hy). Finally, if u=v(0%), then h(u)=h(®)(O*) for any
heF.

Proof. All the statements are trivial since if u#v, u,v € T by, - - -, hy),
then » and v uniquely determine n, Ay, - - -, k,, A and 4, and keeping these
fixed %" and v’ are unique.

Let @, denote the transitive extension of ®* in S,.

Lemma 8. @, is a congruence relation of S,={S,; Fy. Furthermore, if
®,,_, denotes the minimal extension of ®,_, to S, then ®,_,=,.

Proof. The first statement of this lemma follows from the second state-
ment since we know that @, is a congruence relation of & =&,; thus, by
the second statement, ®, = ®, is a congruence relation of &,, and so on.

We prove the second statement by induction on =.

®,=®, was proved in Theorem 1.

Assume that @, _, = ®, has already been proved for k <n. This implies
that @, _, is a congruence relation of &, _,. It follows from Lemma 7 that
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®,_, = ®,. Finally, we prove that ®,_, < ®,. Let u, veS,_,[h]=8,_, U
{h(x)| x €8,-,}. This notation is justified, since S8,_, U {h(z)|z€S,_1}
satisfies the requirements of Definition 14.2 by Lemma 5. Let ¥, denote
the minimal extension of ®,_, to S,_;[k]. We will prove that u=v(¥},)
implies w=v(®,). Lemma 8 follows from this since @, _, can be described
in terms of ¥, in just the same way as ® was described in terms of ®, on
page 104, and this description implies ®,_, < ®,.

So, let u=v(¥},). Then by Lemma 15.3, we have to distinguish three
cases:

(1) w,ve8,_;. Then u=v(P,_,); thus, u=v(d,).

(2) ueS,_1,v¢8,_;. Then v="~(v,), and there exists a w=h(w,) € S,
such that u=w(®,_,) and w,=v,(P,_,). Thus, there exist sequences
U=y, +, T,=w and w,=yq, -, Yo=v; such that z,_,=x(O*) and
Y;_1=y;(0*). By Lemma 7, A(y;_,)=h(y,)(0*); thus, the sequence
U=1xy, -, Ly=w=h(w,), b(y,), -, M(y,)=h(v,)=v will establish that
u=v(D,).

(3) u,v¢S,_,. Using the condition in Lemma 15.3 and Lemma 7, we
get u=v(®,) in a manner similar to case (2). This completes the proof of
Lemma 8.

Theorem 2. Let u,v e B. Then there exists a smallest admissible con-

gruence relation © of & such that u=v(®), where ® denotes the smallest
extension of ® to B.

Proof. We will use the following notation. If @ is an admissible con-
gruence relation of &, then ®" will denote the transitive extension of @*
in S,. By Lemma 8, if u, v €S,, then u=v(®) if and only if u=v(0O").
Since for any u, v € B we have u, v € S, for some n, Theorem 2 is equiva-
lent to the following statement.

If u, v € S,, then there exists a smallest admissible congruence relation
©® such that u=v(0").

We will prove this statement by induction on n. If n=1, then this is
simply Theorem 1. Assume that the statement has been proved for n—1.

If u=v(O"), then there exists a sequence o : u=2,, - - -, ,=v such that
x;_, =x,(0%). By Corollary 2 to Lemma 5 and the definition of ®*, we can
find elements x;_, and z;* of S such that z;_,=x*(0) if and only if
r_y =z,(0%).

Thus, we can associate again with ¢ an admissible congruence relation
©’ and then necessarily ®’< ©. Hence, again, we have only to find all
paths oy, - - -connecting 4 and v and we have to prove that there exists
a smallest congruence relation of the form ©®%.

Let we T*hy, -+, hy_q); if ve TMAy, -+, h,_,), then we find © as in
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Lemma 4. If v ¢ T*(hy, - - -, h,_,), then any path u=2,, - - -, ¥, =v breaks
up into two parts ¢; : u=w,, - - -, o and o : Uy, - - -, T, =v, Where

o€ TMhy, -+, by_y) NS, _1,

that is, ug=hy - h,_((c) or hy - -+ h,_,(d*). Hence, the principle ({) of
Theorem 1 applies in this case as well, that is, if the sequence o, contains
two extreme elements, then we take o,’, the other nonredundant sequence
between u and u,, and the sequence o’, consisting of o;" and o,, will have
the property that ©®° < 7. Thus, we can find the o, for which ©° is mini-
mal in the following manner. Let u, be that one of A, --- h,_,(c*) and
hy -+ h,_1(d?) for which o, : u, u, is a sequence connecting % and wu,; if
neither of them has this property, then u, is either of them. In this case,
let o, be the shortest path connecting » and u,. If veS,_;, we choose
v=vo. Ifve T(ky, -, k,_1), v¥# A, v ¢8,_,, then we choose v, in the same
manner as we have chosen u,, and we define o3 the same way we defined
o;. Since u, and v, are in S, _;, there exists a smallest congruence relation
®, such that uy=vy(O%} ). Let o, be a nonredundant ©,-sequence which
connects %, and v,. Then the sequence o which consists of o5, o5, and o3
will be the required sequence.

§18. THE CHARACTERIZATION THEOREM OF CONGRUENCE
LATTICES

Theorem 1. Let & be an algebraic lattice. Then there exists a partial
algebra B =<{B; F) with the following properties:

(i) The congruence lattice of B s 1somorphic to L.
(ii) Every f € F is unary and f is either an operation or D(f) consists of
two elements.
(iii) B consists of all finite subsets of K containing 0, where K is the set of
all compact elements of L.
(iv) @ is a compact congruence relation of B if and only if © = O(a*, {0}),
where a*={a, 0}, a € K the representation of ® in this form is unique.

Note that this result is a sharpening of Theorem 16.1. The proof is
also quite similar.

Proof. Let K be given as in (iii). For a € K, let us put a*={a, 0}; in
particular, 0* ={0}.

We define B as the set of all finite subsets of K containing 0. Then
{B; U, N> is a distributive lattice with 0* as the zero element. It is also
relatively complemented, which means that if x>y >z, then there exists a
y; such that y U ;=2 and y N y,=z. This implies that there is a 1-1
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correspondence between congruence relations and ideals; we obtain this
correspondence by letting the congruence relation ® correspond to the
ideal Ig={x|2=0%(0)}. If I is an ideal, then ©(Z) will denote the con-
gruence relation which corresponds to I. Let us define F to consist of the
following operations and partial operations: for every x € B, we define
k, and 1, by k. (y)=xUy and I (y)=xNy; for a,be K, a#b, a#0,
b#0, we define g,, by D(g,,) = {{a,0,0},0*} and g¢,,({a,b,0}) = (a v b)*,
9ap(0*)=0*. Finally, for a,be K, 0#£b=<a, we define hy,, by D(h,,)=
{a*, 0%} and hgy(a*) =b*, hy,(0%)=0%.

Let F denote the collection of all partial operations defined so far; let
F, denote the collection of all operations k. and [, and set 8=(B; F).

A binary relation © is a congruence relation of (B; U, N) if and only
if it is a congruence relation of (B; F,> (cf. Exercise 1.50). Thus, every
congruence relation of ¥ is also a congruence relation of (B; U, N).

Let I be an ideal of (K; v) and let I denote the family of all finite
subsets of I containing 0. Then 1 is an ideal of (B; U, N). Thus, I deter-
mines a congruence relation ©(f). We claim that the mapping I — O() is
an isomorphism between the lattice of all ideals of (K; v ) and the con-
gruence lattice of (B; F). The details of the proof of this step are the
same as those of Theorem 16.1, and so they can be omitted.

Now all the statements of Theorem 1 are clear; (iv) means that the
compact elements correspond to the principal ideals.

In this section, let us call a partial algebra regular if it is of the type
described on pages 103 and 104.

Lemma 1. Let (B; F') be a partial algebra satisfying (ii) of Theorem 1.
Then there exists a regular partial algebra { B; F,) such that ® is a congruence

relation of (B; F') if and only if © is an admissible congruence relation of
(B; Fy).

Proof. Trivial. All we have to do is to replace every fe F’ for which
D(f) consists of two elements a, b by three partial operations f;, f,, f5 in
the obvious manner.

Theorem 2. Let A={A; F) be a regular paitial algebra having the
property that if © is a compact congruence relation of U, then O° (the smallest
admissible congruence relation containing ©) is of the form (O(a, b))° for
some a,b € A. Then there exists another regular partial algebra A, ={A,; F;>
such that the following conditions hold :

(i) A< A,, F<F, and {4; F) is a relative subalgebra of (A,; F).
(ii) Every f € F is fully defined on A4,.
(iii) Every admissible congruence relation ® of (A; F) has one and only
one extension © to an admissible congruence relation of C4,; Fy).
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(iv) Every admissible congruence relation ® of (A,; F,) can be written in
the form ® =0 for some admissible congruence relation ® of (A; F.

(v) If © is a compact congruence relation of (A,; F,), then O° is of the
form (©(a, b))° for some a, b e A,.

Proof. Let us construct the partial algebra (4’; F) as on page 104 and
then let us consider the algebra (A4,; F) which we get from <{4’; F) by
Theorem 14.2. By Theorem 17.2, for u,v € 4,, there exists a smallest
admissible congruence relation ® of (A4; F) such that w=v(®). This ©
was constructed as the least admissible congruence relation containing a
compact congruence relation. Hence, by assumption

0 = (O(a(u, v), b(u, v)))°.
Of course, a(u, v) and b(u, v) are not necessarily unique but by the Axiom
of Choice we can fix them.
For every u, v € 4,, we define k,, by D(k,,)={u, v} and k,,(u)=a(u, v)
k() =b(u, v). Let F'=F U {k,,|u,ve 4}
Then (A,; F’) has the following properties:

(i'y A< A,, FS F', and {4; F) is a relative subalgebra of (4,; F).
(ii’) Every f e F is fully defined on 4.
(iii’) Every admissible congruence relation @ of {4; F) has one and
only one extension ® to a congruence relation of (4,; F'>.
(iv') Every congruence relation @ of (4,; F') can be written in the
form ®=0 for some admissible congruence relation ® of <4; F.

Of these, (i') and (ii’) are trivial. To prove (iii’), first we note that by
Theorem 17.1 and Theorem 15.1, every admissible congruence relation ©
of {4; F) can be extended to a congruence relation O of (4,; F). We
claim that @ is a congruence relation of (4,; F), that is, the substitution
property can be proved for the k,,. In other words, u=v(0) implies
a(u, v)=b(u, v)(©). Indeed, u=v(®) implies that O = d(u, v)=(O(a(u, v),
b(u, v)))°, where ®(u, v) denotes the smallest admissible congruence re-
lation of (A4; F) such that u=v(®(u, v)). Hence, a(u, v)=b(u, v)(0) and
so a(u, v) = b(u, v)(0).

To prove the uniqueness statement of (iii’), assume that @, and @, are
both congruence relations of (4,; F') and that both are extensions of
the admissible congruence relation ® of (4; F). If @, ®,, then there
exist u,v € A, such that u=v(®,) and uwzv(P,) (or, symmetrically,
uzv(D,) and u=v(d,)). Since u=v(D,), we get k,,(w) =k, (v)(D,); that is,
a(u, v)=b(u, v)(D,). Thus, a(u, v) =b(u, v)(0), thatis, © = O(u, v). But we
have that © < ®,, thus u=v(®d,), which is a contradiction.
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(iv’) is trivial.

If we combine what we have proved so far with Lemma 1, we get the
proof of (i)—(iv) of Theorem 2.

To prove (v), let ® be a compact congruence relation of <{4,; F"),
0=V (O(u;, ) |0<i<n). Let ® be a congruence relation of (4; F)
defined by ®= \/ (O(a(u;, v;), b(u;, v,))|0=<i<n). Then by assumption,
P°=(0(a, b))°, for some a,beAd. Now it is easy to check that
®=(0(a, b))° in (4,; F") implying (v).

Now we are ready to state and prove the characterization theorem for
congruence lattices.

Theorem 3 (G. Gritzer and E. T. Schmidt [2]). Let & be an algebraic
lattice. Then there exists an algebra W whose congruence lattice ts isomorphic
to L.

Proof. Consider the partial algebra (B; F) constructed in Theorem 1
and let (B; F'y={A,; F,) denote the regular partial algebra that we get
from (B; F> by applying Lemma 1. By (iv) of Theorem 1, (A4,; Fy>
satisfies the conditions of Theorem 2; hence, we can apply the construction
of Theorem 2 and we get a regular partial algebra (4,; F,>. By (v) of
Theorem 2, (4, ; F,) again satisfies the conditions of Theorem 2; hence,
it can be applied again and we get the regular partial algebra (A4,; Fy).
Proceeding thus, we construct (4,; F,> for every nonnegative integer n.
Set A= | (4,|n<w) and F= |J (F,|n<w). We claim that (4; F) is
an algebra and its congruence lattice is isomorphic to 2.

First we note that

B=A4A,c A, c A, c---cd4,<---
and
Fr=F,cF,clF,c---cF,c---.

Let fe F andlet a € A. Then a € A4, for some n and by (ii) of Theorem 2
we have that f is fully defined on 4,. Thus, (4; F) is an algebra.

Finally, we observe that every admissible congruence relation of
(B; F"> can be extended to a congruence relation of (4; F) in one and
only one way. Indeed, if ® is an admissible congruence relation of
{B; F'"y, then by Theorem 2 it has one and only one extension 0, to
(A4,; F,), and so on. Let us define the congruence relation ®, of <4,; F,>
as the only extension of @, _, to (4,; F,).

Set ©,= U (0,|n<w). It is obvious that ®, is a congruence relation
of (A4; F». The uniqueness is also obvious since if @ has two extensions
®,, ®, to (A4; F, then the restriction of ®; and ®, to some A4, would also
be different, contradicting (iii) of Theorem 2.
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Thus, the congruence lattice of (A4; F) is isomorphic to the lattice of
admissible congruence relations of {B; F’), which in turn by Lemma 1 is
isomorphic to the lattice of congruence relations of 8, which by Theorem 1
is isomorphic to €, and this is what we were required to prove.

The method of the last section can be summarized as follows: we want
to construct an algebra % having property P; it is easier to construct a
partial algebra 8 having P; B generates an algebra %, however A does not
have P; introducing additional partial operations on % we make it into a
partial algebra which has P; and so on ---; finally a “direct limit” is
formed.

This method has been successfully used by others. For instance,
A. A. Iskander [1] used this method to prove that for any algebraic lattice
2 there exists an algebra o such that @~ (F(A?); =>. See also G. Gritzer
and W. A. Lampe [1].

EXERCISES

1. Characterize all partial algebras in which every relative subalgebra is a
subalgebra.

2. Characterize all partial algebras in which every weak subalgebra is a
relative subalgebra.

3. Let A and B be partial algebras and ¢ a full homomorphism of % into 8.
Prove that (A¢; F) is a subalgebra of B. Is the converse true?

4. Is it possible to distinguish within U between congruence relations in-
duced by homormorphisms and congruence relations induced by full
homomorphisms ?

5. Simplify Theorem 14.1 (that is, simplify the description of ©;) in case all
partial operations are unary.

6. Let a be as in Theorem 14.1, and consider different representations of a
polynomial symbol p in the form

(*) P = 7(Po>" s Pk-1)s

where d can be substituted into p,. Is there a largest such representation
(*) in the sense that if

P = 71(Pos - s Pn-1)

is another such representation, then the p; are polynomials of pg,- - -, pr -1 ?
7. Prove that if {(n, 8> <{m, A>, then in general

Aoy # Am,ase

8. Prove that for p; € P)X(7), {py,- -, pn-1} is S -independent if and only if
for r,s e P(")(T)y 7(Pos* * *s Pn-1) =38(Pos* * *» Pn—l) 1mplles r=s.
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Prove that pg, - -, P, -1 i8 & -independent if and only if {[pg, * *, Pn-1]; FD
is isomorphic to B™(r) and there is an isomorphism ¢ such that pp=x;,.
Let B be a subalgebra of B(7). Let us say that p € B is irreducible in
B if p=7(po»-**»Pn-1)> Po>***» Pn—1 € B implies r=x, and p=p,. Prove
that any sequence of irreducible polynomials is #-independent.

Prove that every subalgebra of $(7) is isomorphic to some P¥(7).

Let p be an n-ary polynomial symbol and let qq,- -, q,_; be «-ary poly-
nomial symbols. Let p(qo,- -+, q,-;) denote the «-ary polynomial symbol
that we get from p by replacing every occurrence of x; by q,. Prove that

P90 * > Gn-1) = P(qo>** *5 Gn—1)-

Prove Theorem 13.3 using only Lemmas 15.1 and 15.3.
Generalize Lemmas 7.3 and 7.4 for partial algebras.
Why does Lemma 8.4 fail for partial algebras?
Let ® and @ be congruence relations of the partial algebra . Then
® v @ is not necessarily a congruence relation of 9 (v is formed in € (4)).
Let C4(A) denote the set of strong congruence relations of . Show that
C(A) =<C4(N); <) is a sublattice of (A4).
Is G(A) a sublattice of E(A4)? Is C,(A) a sublattice of E(A)?
Let A and B be partial algebras and ¢ a homomorphism of 9 into B.
When is it possible to find algebras U; and B; such that U is a relative
subalgebra of UA,, B is a relative subalgebra of B,, and there exists a
homomorphism i of U; into B; with Y,=¢?
Can you generalize Ex. 1.50 to partial algebras ?
Prove that the description of ®(a, b) (Theorem 10.3) does not hold for
partial algebras.
Does Lemma 10.4 hold for partial algebras? Does it hold for strong
congruence relations ?
Prove the homomorphism theorem for full homomorphisms.
Under what conditions can we prove the isomorphism theorem for partial
algebras ? Prove the necessity of the conditions.
Define the concept of derived partial algebra and prove Theorem 12.1 for
partial algebras.
Characterize those subsets B of P(4 x A) for which there exists a partial
algebra A =<{A; F)> with B=C(¥).
In Lemma 15.3, is it true that for given w, v € 4, there exists a smallest
congruence relation ® of B such that u=v(®)?
Let & be an algebraic lattice. Show that there exists a set A such that &
is isomorphic to some complete sublattice of E(A).
(P. M. Whitman) Show that every lattice can be embedded into some
€4).
For every algebra <{A4; F') there exists an algebra <(A4;; F;> such that
AcA,, FS F,,{A; F) is a subalgebra of <4,; F> and

(i) every congruence ©® of (4; F) can be extended to a congruence
relation © of (A4; F)>;

(ii) ® > O isan isomorphism between €({4; F)) and €(KA,; F>);
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(iii) every compact congruence relation of (A,; F;> is principal.
(G. Gréatzer and E. T. Schmidt [1] and [2].)
Show that the results of §17 cannot be extended to nonunary algebras
(Theorem 17.2 fails to hold, in fact the extension @, of @, from &; to S,
does not necessarily have the property stated in Theorem 17.2).}
Let & be a group. Find a simple algebra 2 such that the automorphism
group of ¥ is isomorphic to .
Let € be an algebraic lattice. Find an algebra U such that the congruence
lattice of U is isomorphic to € and U has no nontrivial automorphism
(i.e., B(A)=1).
|C(A)| =1 implies |G(A)| =1.
(W. A. Lampe) Let & be an algebraic lattice in which there exists an
element a#0 such that a< \/ (x,lz'eI) implies a<z; for some %€ I.
Then for any group & there exists an algebra 9 such that ()~ & and
Gz &.
Let A be an algebra of type r generated by H={h, I y<a}. There is an
isomorphism ¢ between ¥ and P*(7) such that h,p=x, for y <« if and
only if one of the following conditions holds:

(i) forp, g€ P™(1), n<a, Plhygy -+ *y Ay, ) =q(Rygs+ 5 by, ) and y £y
for 7#j imply p=gq;

(ii) if B is an algebra of type 7, b, € B for y < «, then there is a homo-
morphism ¢ of YU into B with h,y=b,, for y < «;

(iii) there exists a homomorphism i from U into PB@(r) with h,h=x,
for y<a.
Let A and B be algebras of type 7. Prove that A and B have up to iso-
morphism a common extension if and only if either there are no nullary
operations or there are nullary operations and <[ @ lu; F)>~ ([ &lzs; F).
(K. H. Diener}) The following condition can be added to Ex. 36:

(iv) (i1) holds for every extension B of 9 and if there are nullary opera-
tions, <[ & Ju; Fy= BO(7).
Generalize Ex. 37 for partial algebras.
Generalize Ex. 37 to any set of algebras (partial algebras).
Let H, K<(ix, I y<a}SP@(7). Prove that H N K= g implies that
[H] N [K]= @ if there are no nullary operations and [H] N [K]=P©(7)
otherwise.
Let 9 be an infinitary partial algebra. Then there exists an infinitary algebra
B which contains U as a relative subalgebra and has the property that every
congruence relation of U can be extended to $B. (Generalize Lemmas
15.1-15.3.)
(W. A. Lampe) Let % be an algebra, ¢ € E(U), p, the right multiplication
by ¢ on E(X), ¢, and ¢,, the equivalence relations induced by ¢ and p, on
A and E(2) respectively. Then &, — ¢,, is an order preserving map.

1 This shows that the proofs of the Theorem of E. T. Schmidt [2], and Theorem 6
of G. Grétzer [8] are incorrect.

1 See K. H. Diener and G. Gratzer [1].
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(W. A. Lampe) If ¢ is a right-zero in §(X), then e, ¢, for all ¢ € E(Y).
Let m and n be regular cardinals and mt < n. Prove that every tmi-algebraic
lattice is also n-algebraic and find an n-algebraic lattice which is not
m-algebraic. (See Ex. 0.82.)

Describe those partial algebras 9 in which all congruence relations are
strong. (D(f,, )= & or 4™.)

State and prove Theorem 11.4 for infinitary algebras.

An endomorphism of a relational system {(4; R) is a mapping ¢ of A4 into
A such that r(ag, a,, - - -) implies 7(agp, a1¢, - - -) for all » € R. For a unary
algebra 9 find a relational system <{4; R) such that each r € R is binary
and ¢: A — A is an endomorphism of 9 if and only if ¢ is an endomor-
phism of <4; R).

For every set A there exists a binary relation r such that the identity map
is the only endomorphism of <4 ; ). (P. Vopénka, A. Pultr and Z. Hedrlin,
Comment. Math. Univ. Carolinae 6 (1965), 149-155). (Hint: for |4| = R,
assume A={-y| y=8+1} where 8 is an initial ordinal. Define r by the
following rules: (i) 0r2; (ii) er(e+1), « = §; (iii) if B is a limit ordinal not
cofinal with w, then «rg if and only if « is a limit ordinal and « < B; (iv) if «
is a limit ordinal cofinal with w, then «=lm o, a;<ap<---, and
o, =G, +n, where @, is a limit ordinal; set yr« if and only if y = a,, for some
n=2; (v) ar(8+1) if and only if = 8§ or « is a nonlimit ordinal # 8+ 1.)
Let {A4; R) be a relational system with all € R binary. Find a binary
relational system (B; r)> whose endomorphism semigroup is isomorphic to
the endomorphism semigroup of <(4; R). (A. Pultr, Comment. Math.
Univ. Carolinae 5 (1964), 227-239.) (Hint: Let R={r l 1el}. Set
B=A U U (rx{i}|ieI) UI U {vy, vy vg uy, tg}. Define r as follows:
(i)  on I as in Ex. 49; (ii) xqr{zy, ®1, 1)rey; (iil) {xq, 2,, 2 >7¢ for 7 € I; (iv)
v11varvgrvy; (V) for 4 € I, drug; (vi) uyrug and uyrv,, j=1, 2; (vii) for z € 4,
xru,.)

(Z. Hedrlin and A. Pultr [1]) In Theorem 12.3, % can be chosen of type
<1, 1>. (Hint: combine Theorem 12.3 with Ex. 48-50. In constructing
from {Bj;r), the two unary operations should act as projection maps
for r.)

PROBLEMS

Let BS P(A x A). When is it possible to find a partial algebra <4; F)
with B=Cy(<4; F))? (See Ex. 17 and 18.)

Let £, and &, be lattices. Under what conditions does there exist a partial
algebra U with C(A)~ L, and C(A)x~ L, ? (See Ex. 17 and 18.)

Relate the following four classes of lattices:

Ly: the class of finite lattices; L;: the class of lattices isomorphic to sub-
lattices of finite partition lattices (i.e., lattices which are isomorphic to a
sublattice of some (Part(4); <) for some finite set A); L,: the class of
lattices isomorphic to strong congruence lattices of finite partial algebras;
Lj: the class of lattices isomorphic to congruence lattices of finite algebras.



14.
15.

16.

17.
18.

19.

20.

PROBLEMS 117

Does Theorem 14.1 hold for infinitary partial algebras ?

Let B P(AxA). When is it possible to find an infinitary algebra
A ={A; F) with C(Y)= B? Characterize €().

Characterize (E(), Ex(A), Es(A)) as a triplet of semigroups. (See Lemma
16.1.)

Characterize the congruence lattices of algebras of finite type.

For an integer n> 2 characterize the algebraic lattices & which can be
represented as (¥ (A"); <) for some algebra . (See the result mentioned
on p. 113).

For a nonvoid set 4, and integer n > 1, characterize those subsets B< A"
for which B=.% ("), for some algebra A=<4; F). (For n=1 this was
done in Theorems 9.1 and 9.2. In contrast with Problem 18, this is open
also for n=2.)

Develop properties of algebras whose automorphism groups are transitive
doubly transitive, and so on. (See, e.g., G. Gritzer [2]).



CHAPTER 3
CONSTRUCTIONS OF ALGEBRAS

It is very important to find methods of constructing new algebras from
given ones. Two such methods have been discussed in Chapter 1: namely,
the construction of subalgebras and homomorphic images of a given
algebra. Some further methods will be discussed in this chapter while we
postpone the discussion of others because we do not have the necessary
background to introduce them now; e.g., free products will be discussed
in Chapter 4 and the properties of prime products in Chapter 6.

§19. DIRECT PRODUCTS

Let A;=(A;; F), i € I, be given algebras of type 7. Form the Cartesian
product [T (4;|¢€ ) and define the operations f, on it as follows: if
Pos > Pn,-1 €] ] (4;| i € I) and y <o(r), then

fy(pO: Tt pny—l)(i) = fy(po(i)’ ) pny—l(i))-

The algebra ([ (4;|iel); Fy=T](¥;|iel) is called the direct
product of the algebras ;, 7 € I.

Since 47 was defined as {@}, if I= @, the direct product is the one
element algebra 1™ of type 7.

Let %A,, y<o (o is an ordinal), be algebras. Then the elements of the
direct product according to the convention of §4 will be a-sequences and
the operations are defined componentwise. For instance, if «=2, i.e., we
take the direct product of two algebras, then the elements are

<a‘0’ bo>, R} <a/7ly"1’ bn.,—-1>
and the operation f, is defined by

f1(<a/0’ b0>7 R <any—l’ bny-1>) = <fy(a0’ T any—1)9f7(b0: ) bny-1)>'

Theorem 1. Let (A;; F),iel, be a family of algebras. Suppose that
{I; £) 15 a well-ordered set of order type «. Let @ be an isomorphism between
I; £ and the well-ordered set of all ordinals less than «. Then

f_) <f(0¢—1),f(l¢—l), ot '>f('y<P—1)s ) >y<oz

118
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is an isomorphism between ] (A |i€l) and TT(Y, | y<a), where
Ay =Wypo-1.

In other words, from an algebraic point of view it is enough to consider
the direct product defined in terms of a-sequences.

The proof of Theorem 1 is trivial.

If A~ A, for all s € I, then [T (U, | ¢ € I) will be called a direct power of A
and will be denoted by %'. In case I={y|y<a} for some ordinal «, we
write A% for A7,

Now consider [T (%, |7 € I)and let ¢ : f — f(i) (f €[] (4;] ¢ € I)) be the
1-th projection.

It is easy to verify that e is a homomorphism of [T (| ¢ € I) onto ;.

The congruence relation O, induced by the homomorphism e, can be
described by

P =9(0,)(p,qe[](4;]|iel)) ifand onlyif p(i) = g(d),
and [T (|7 el)/O,~ %,
Let us consider the special case (4,x A4;; F»>. Then we have two
congruence relations, 0,, ®,. We claim that

®0V®1=L and @0/\@1:(.0.
Indeed,

{ag, boy = <ay, b,)(0p A ©,) ifand only if @, = a, and b, = b,

that iS, 00 A ®1=w.
For any <a,, by and <a,, b,> € A, x A, we have

@y, boy = <a;, b;)(0, v 0,)

because

g, oy = <ag, b1)(0y)
and

{ay, by = <ay, b1 )(0,)
and hence

g, boy = {ao, by> = <ay, b1)(0,0,).
It is now evident that 0, 0,=0,0,=0,Vv O,.
If 0,0,=0,0,, then ®, and O, are said to be permutable.
Summarizing, we have the following theorem.

Theorem 2. Let U be isomorphic to A, x A,. Then there exist congruence
relations ®g, O, of A such that

(l) 91/@4’; QIh i=0y l;
(ii) OV O,=4;
(iii) OgA O;=w;
(iv) @y, O, are permutable.
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The converse also holds.

Theorem 3. Assume we have an algebra A and congruence relations
Oy, ©; on A such that properties (ii), (iil), (iv) are satisfied. Then
A/ Oy x A/ O, is tsomorphic to A.

Proof. We set up the required isomorphism in the natural way:
¢ 1 a—> ([a]Oy, [a]0,),

where a € 4 and of course [¢]®, € 4/®, and [¢]0, € 4/0,.
@ is 1-1. Indeed, if a #b, then a£b(@, A 0,). So a#b(0,) or a#b(0,).
Hence

[a]®, # [b]O, or [a]O, # [b]O;.
@ is onto, since if
[a]®o, [6]0:> € 4/Oyx 4]0,
then because ®,®, =, there exists an element ¢ € 4 such that
a=c¢0, and c=b0,).
Then {[a]®,, [6]O;>={[c] Oy, [¢c]®,;> and thus
cp = {[a] Oy, [6]O;).

To show that ¢ is a homomorphism, compute: f,(ao, - - -, ay, -1 )p=(by the
definition of the ma‘pping ®) <[f7(a07 c Ay 1)] @0’ [fy(ao’ ERRPY 2 1] ®1> =
(by the definition of f, in the quotient algebra) (f,([a;]0O, - - -, [@x,-1]19),
f[@0]Oy, - - -, [@n, -1]0,)> = (by the definition of f, in the direct product)
[/ ({[@0]Oo; [@6]O1), - - -, {[@n, -110,, (@, -1101D)=f,(a0p, - - -, A, - 19)- This
completes the proof of the theorem.

Theorems 2 and 3 are due to G. Birkhoff [6].
The last part of the proof is a special case of the following lemma.

Lemma 1. Let A be an algebra and ; a homomorphism of U into W, for
v € 1. Let us define a mapping  of A into ] (4|3 € I) by

(@h)(@) = agy.

Then ¢ is a homomorphism of A into [T (U, |4 €I) and e =y, for i€ I,
where e/ is the i-th projection.

Proof. Trivial, as in the last part of the proof of Theorem 3.

Corollary. LetU be an algebra and I a nonvoid set. For a € A, let p, € A*
such that py(i)=a for all icl. Set B={p,|ac A}. Then {B; F) is a



§19. DIRECT PRODUCTS 121

subalgebra of ' (called the diagonal of A') and a — p, ts an isomorphism
between A and B.

Let %, < € I, be algebras and let I’ = I. Then there is a natural mapping
o from [T (4, | 1e€l) onto [ ] (Ai|ie I') which is defined by letting an
felT(4;|iel) correspond to its restriction f,. to I'. ¢, is a homo-
morphism of [T (%|¢ e I) onto [ (Y|4 €I'). An important property of
this homomorphism is described by the following result of C. C. Chang [1].

Theorem 4. Let U, i €I, be algebras of the same finite type (that 1s,
o(7)<w), and let B [ (A;|i€l). If B is finite, then there exists a finite
I' < I such that ¢, induces an isomorphism between the partial algebra B and
the partial algebra {Bg,.; F>.

Remark. This means that if we are interested only in the “local”
properties of a direct product, then it is enough to form finite direct
products.

Proof. Suppose B={p,,:--,p,_,}. Take all pairs p,, p, such that
pr#p,. This implies that there exists an 7 € I such that

Pi(?) # pie).

Pick one such ¢ for each p, #p, and take all these ¢ as the set I,’.
Suppose now that

fr(%a Tty qn.,—l) =4q
in B. Then also

fr((QO)I'l’ T, (qny—l)l'l) = 4qr;-

Finally, consider all equalities

fr((%)l'l, s (Qny-1r) = ar

which do not hold in 8.
Then there exists an ¢ € I such that

fV(QO(i)’ T qn,—l(i)) # Q(")

For each such equality pick an i; these will form I,’. It is easy to see
that I, is also finite since B is finite and we only have a finite number of
operations. Define I'=1," U I,’. Obviously I’ satisfies the requirements
of the theorem.

Decomposability into infinite direct products will be discussed in §22.
If the algebras considered are of a special type such as groups and rings



122 CH. 3. CONSTRUCTIONS OF ALGEBRAS

(there is a ““zero”, 0, and a ““ + ”, such that f,(0, - - -, 0)=0 for all opera-
tions f, and 0+x==x+0==z), then it is possible to find an intrinsic defini-
tion of direct products. Within this framework it is then possible to attack
the problem of ““common refinements” of two direct products and also
the problem of isomorphism of two direct product representations of such
an algebra. An elegant treatment can be found in the book of B. Jénsson
and A. Tarski[1], in the finite case. For more recent results, see P. Crawley
and B. Jénsson [1], C. C. Chang, B. Jénsson and A. Tarski [1] and also
B. Jénsson [7].

In a very special case, the refinement problem can be translated to the
problem of irreducible representations of the unit element in a modular
lattice, which is a purely lattice theoretic question. For this, see Birkhoff
[6].

Let A=Ay x - -+ xA,_;, let p and q be m-ary polynomial symbols, and
let al=<ay!, - -, a}_,>, b'=Cby,---,bh_)>, at,bte 4, for 0<it<m. Let
P, g (resp. p*, ¢') denote the polynomials induced by p and qin 2 (resp. 2,).
Since the operations are defined componentwise, we have the following
result:

Lemma 2. p(a® ---, a™ 1) =¢q(b° ---, b™~Y) ¢ and only if
@l -, aP ) =¢'(b?°, -, bIr1) for all i; equivalently, p(a®, - - -, a™ 1) #
q(d°, - - -, d™ 1) if and only if for some ¢, p'(a°, - - -, aP =) £ (b0, - - -, bF2).

Corollary. The mapping ¢: p — {p° -+, p™~ > is a 1-1 homomorphism
of B™(A) into B (Ao) X - -+ X PM(U, _,).

§20. SUBDIRECT PRODUCTS OF ALGEBRAS

If we decompose an algebra into the direct product of algebras of
simpler structure, then we can prove theorems about the algebra by prov-
ing them for the components. A best possible decomposition is one such
that we cannot decompose any of the components further. However, such
a decomposition does not exist in general (as a trivial example, take a
nonatomic Boolean algebra). To get decompositions of this kind, we have
to weaken the concept of direct product.

Definition 1. Let (%, |i € I) be a family of algebras of the same type. Let
AcTT(4]iel)

be such that A is a subalgebra of the direct product. U is called a subdirect
product of the algebras N, ¢ € I, if Ae!=A, for all i € I, where e, is the i-th
projection.

If A, =B for all i € I, then A is a subdirect power of B.
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This condition is equivalent to the following: for any a € A4; there
exists an f € 4 such that f(i)=a.

Let @, be the congruence relation induced by e/ on [ (4;]|7 € I) and
let ©,=(D,),.

Theorem 1 (G. Birkhoff [3]).
(i) A/O;= As;
(i) A (0;]iel)=w.

Proof. Trivial.

Theorem 2 (G. Birkhoff [3]). Let % be an algebra; let (©;|ie ) be a
family of congruence relations such that
A (0;]iel) = w.

Then A 1s isomorphic to a subdirect product of the algebras AV, i € I.
Foreacha € A,wedefineanf, € [| (/0| € I)inthe following manner
fa(@) = [a]©; (€ 4]©,).

Let
A" = {f,|acd} = T](4/0;|ie]).
Then the mapping
p:a—>f,

is an isomorphism between A and W'; furthermore, A’ is a subdirect
product of the algebras N[ O;, 1 € 1.

Proof. Let us compute:

f‘/(fao’ e ’fa,.y_ 1) = ffy(a()."‘.an.y— 1)

because

fy(fao’ ce "fany_l)(i) = fy(fao(i)’ e "fa,,y_l(i))
= fyllao]®y, - - -, [%,—1]91)
= [fy(ao’ Tt any—l)]Gi
= f/,(ao,-u.an.,-n(i),

which proves that A’ is closed under the operations and that ¢ is a homo-
morphism. It is trivial that ¢ is onto and that ' is a subdirect product.

If f,=f, then f,(¢)=f,(i) for every ieI; thus, [¢]®;=[b]O; and so
a=b(0,) for every ieI; therefore, a=b( A (0;|iel)); thus a=b(w)
which means that a=b, proving that ¢ is also 1-1. This completes the
proof of the theorem.
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Every algebra % has trivial subdirect factorizations. For instance,
consider 4’< A x A consisting of all pairs {a, a). Then U is isomorphic to
A’, which is a subdirect product of two copies of 2.

Another example is given by the isomorphism

A> AxB,

which always holds if B has one element only.

Theorems 1 and 2 prove that to have a subdirect factorization is
equivalent to the existence of congruence relations ; such that A 0;,=w.
A trivial factorization is one where at least one 0, equals w.

This leads us to the concept of subdirectly irreducible algebras.

Definition 2. The algebra A ¢s called subdirectly irreducible if the
relation

AOie) =w (0,e0)

tmplies the existence of an i € I such that ©,= w.

Corollary. An algebra A is subdirectly irreducible if and only if A has
only one element or €(A) has one and only one atom, which is contained in
every congruence relation other than w.

Proof. Assume that 4 has more than one element. Suppose we have a
single atom 8 which is contained in every congruence relation other than
w, and, contrary to hypothesis, that A ©;=w and 0, > w for each 1. Then
®,= 8. Therefore, A\ ©,;= 8> w, which is a contradiction.

Conversely, assume that % is subdirectly irreducible. Let A (0| © #w)
=38. Then 8> w since A is subdirectly irreducible. If ® > w, then 02 §;
hence 8 is an atom and it is contained in every congruence relation other
than w.

Theorem 3 (G. Birkhoff [3]). Every algebra is isomorphic to a subdirect
product of subdirectly irreducible algebras.

Proof. We have to construct a family of congruence relations (0, |7 € I)
such that: (i) A (0;|7 € I)=w. By Theorem 11.3

A/ 0,) = <[0)); =).

Thus the condition that the algebra /0, is subdirectly irreducible is by
the corollary to Definition 2 equivalent to: (ii) there exists a congruence
relation covering ©;, which is contained in every congruence relation
properly containing ©,. (We assume |4|>1).



§20. SUBDIRECT PRODUCTS OF ALGEBRAS 125

We claim that a family of congruence relations satisfying (i) and (ii)
is given by
(Y(a, b)|a#b, a,be 4),

where the ¥'(a, b) were constructed in Theorem 10.6.
To prove (i), assume that z=y(A ¥(a, b)) and z#y. This would imply
that

z=y(¥(z, y)),
which is a contradiction.
If ®>%¥(a,bd), then ®= O(a, b), which means that ©O(a, d)Vv¥(a,d)
covers ¥(a, b) and it is contained in every congruence relation properly
containing ¥(a, b). This completes the proof of the theorem.

Given two algebras, there are many algebras which are subdirect
products of the given ones. In the sequel, we will describe a method (see
L. Fuchs [1]) which constructs some subdirect products.

Lemma 1. Let U, A,, and B be algebras and let ¢, be a homomorphism of
A, onto B, 1=0, 1. Let
C = {Kap, a,) | Aopy = @191}
Then € is a subdirect product of A, and A, .

Proof. If a,p,=0b,p,, then

fr(ao’ ] a’n,—l)‘PO =-f7(b0’ Tt bn,—l)?’p

which implies that C' is closed under the operations. Take an a € 4,. Then
there exists a b € 4, such that ap,=bg, since ¢, is onto. Thus, a is the
first component of the pair <{a, by € C. A similar consideration for the
second component completes the proof of the lemma.

L. Fuchs [1] proved that in a number of cases this construction gives
all subdirect products. His results were generalized by I. Fleischer [1].

Theorem 4 (I. Fleischer [1]). Let A be an algebra and assume that any
two congruence relations of WA are permutable. Then any subdirect repre-
sentation of A with two factors only can be constructed by the method of
Lemma 1.

A sharper result is the following.

Theorem 5 (I. Fleischer [1]). Let U be isomorphic to a subdirect product
of the quotient algebras A[/O, and A/O, by the natural isomorphism
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@: a—>[a]O,, [a]O,>. This subdirect representation of A can be constructed
by the method of Lemma 1 if and only if ®, and O, are permutable.

Proof. Assume that ®, and ®, are permutable. Let i; be the natural
homomorphism of % onto A/O, (that is, ay;=[a]O;) and let ¢; be the
natural homomorphism of %/®; onto B=A/O, v O, (that is,

([a]0y)p; = [a](OyV 6,)).

B =A/(0,Ve,)

-° lal(e,vVe,)

The elements of A are represented in the subdirect product as pairs of
the form

{[a]®y, []O,) (1)
and we have to prove that these are the same as the pairs of the form
{[a]®o, [6]0,> with ([a]@)pe = ([6]O1)e;. 2)

If we have the pair (1), then it is also of the form (2) since
([2]O0)gpo = [a](Op V Oy) = ([2]O1)ey;

Conversely, if we are given the pair (2), then a=b(®,Vv ©,) and since
Oy V 0, = 0,0, by permutability there exists a ¢ € A such that a=¢(0,)
and ¢=b(0,); that is, [a]O,=[c]®, and [b]O, =[c]O,. Thus,

[a]®y, [6]0,) = {[c]Oy, [¢]O.),

which was to be proved.

To prove the converse, assume that 2 is isomorphic to the subdirect
product of A/, and A/ O, and that it can be constructed by the method
of Lemma 1 using the homomorphisms ¢; of %A/®; onto B. Let y; be the
natural homomorphism of %A onto A/®,. Let ®; denote the congruence
relations of A induced by the homomorphisms y;g;.
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Then a=b(®,) if and only if ([a]0)p,= ([6]0,)p;. Since ([a]O, [4]0,)
€ A, it is also of the form (2), that is, ([a]©,)p,=([@]®,)p, and similarly
((]®0)po= ([6]®;)py. Thus, a=b(@,) if and only if ([a]®o)pe= ([6]Oc)po in
which case ([¢]®,)p; =([b]®,)p,, which is equivalent to a=5b(®,).

Hence ®,=0,. Set ¥'=0,=0,.

Summarizing, if we have a pair of the form (2), which means that
a=>b(¥), then there exists a ¢ € 4 such that [a]®,=[c]®, and [b]O; =
[c]®;. This yields ¥ = 0,0,, proving that @, and ©, are permutable.

This completes the proof of Theorem 5.

This method gives very little if more than two factors are considered;
see G. H. Wenzel [1].

Let ®, be a congruence relation of A, ¢el. Define a relation
[1(®]iel) on [](4;|iel) as follows: if p,qe[] (4;|iel), then
p=q(T](0,]iel)) if and only if p(i)=q(:)(®,) for every i € I.

Lemma 2. [](0,|i€1) is a congruence relation of the direct product
[T1Q|iel).

Proof. Trivial.

Corollary. The following tsomorphism holds:

[T@|ieD)/TT1(0:|iel) =~ [T1OL/O,]|iel).

An isomorphism can be set up by letting [p]( [ (0,]1 € I)) — B, where p is
defined by

p(t) = [p(2)]0;.

A similar statement holds for homomorphisms.

Lemma 3. Let U, and B; be algebras and let o, be a homomorphism of U,
into By, for all 1 € I. We define a mapping

o=TIwlic

of [1(4;|i€l) into [T (B;|i€l) as follows: if pe[] (A4;|i€l), then
(pp)(i) = p(i)p;. Then @ is a homomorphism of T[] (W|iel) into
[1(B]iel).

Proof. Trivial.

Now we will prove that a subdirect product of homomorphic images is
the homomorphic image of a subdirect product.
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Lemma 4. Let B’ be a subdirect product of the algebras ', 1 € I. Let o,
be a homomorphism of N, onto W,’; for © € I. Then there exists a subdirect
product B of the algebras A, and a homomorphism ¢ of B onto B'.

Proof. Define 8 as the complete inverse image of %’ under the homo-
morphism ¢= [] (¢ |7 € I). Then B is a subalgebra of [T (¥, |iel) by
Lemma 12.1. Take a, € 4;. Then a,p, € 4,’. Since B’ is a subdirect product,
there exists a p’ € B’ such that p'(¢)=a,p,. Now define p by p(i)=q,
and p(j)=any inverse image of p'(j) for j#¢. Then p € B and p(¢)=a,.
Thus B is a subdirect product of the %,. That Bp= B’ follows from the
definition.

§21. DIRECT AND INVERSE LIMITS OF ALGEBRAS

There are two well known methods to build up algebras from families
of algebras, the so-called direct and inverse limits. No systematic account
of the properties of these constructions can be found in the literature,
although almost all the results given below belong to the “folklore”.
Besides, most results are set theoretic in nature, and they can be derived
from the case of groups; see for example S. Eilenberg and W. Steenrod,

Foundations of algebraic topology, Princeton University Press, Princeton,
N.J., 1952.%

Definition 1. A4 direct family of sets &7 is defined to be a triplet of the
following objects:

(i) A directed partially ordered set {I; < called the carrier of </;
(ii) sets A; for each i € I,
(iil) mappings @;; for all © < j, where ¢;; maps A, into A; such that

QP =@ f 1S5Sk

and @y 18 the identity mapping for all i € I.

For a direct family .o/ consider the set] (J (4, |4 € I) and define on it a
binary relation = by x=y if and only if x € 4;, y € A; for some ¢,j€ 1
and there exists a ze 4, such that i<k, j<k, xp, =2, ypy=2. It is

t The best framework for §21 would be category theory. By duality we would have
to prove only one of the statements of Lemma 7 and only one of Theorems 2 and 3.
Note that the categorical definitions of various algebraic constructions are given in
the Exercises.

} We assume that the A, are pairwise disjoint; if this is not the case, we have to
form the disjoint union, say () (4, x{¢} | ¢ € I), and introduce = on this set.
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obvious that this relation is reflexive and symmetric. To prove transi-
tivity, let y=w also hold; then y € 4,, w € 4, and there exists a v € 4,

j=n,1=n, such that yp,,=v, we,, =v. Let m be an upper bound for k and
n. Then

TPim = TPikPrm = 2Prm = YPnPrm = YPim
and
WPim = WPinPrm = VPnm = YPimPam = YPim>

which proves that x=w.

Thus, = is an equivalence relation; let £ denote the equivalence class
containing x and let 4, denote the set of equivalence classes.

Definition 2. A, ¢s called the direct limit of the direct family of sets s/,
in symbols 4., =lim &7.

Definition 3. A4 direct family of algebras &7 is defined to be a triplet of the
following objects:

(1) A directed partially ordered set (I; <);
(i) algebras W,={A,; F), 1 € I, of some fixed type;
(iii) homomorphisms @y; of A, into A, for all © < j such that
PP = f 1SSk

and @ ts the identity mapping for all v e I.

It is obvious that if we have a direct family of algebras, then the base
sets of the algebras form a direct family of sets. Thus, we can form the
direct limit 4.

We can define the operations f, on 4, as follows: Let z,€4,,

0<j<mn,, and let m be an upper bound of the ¢,. Then z;=2,' € 4,,, where
z; =Zp;,m. Define

fr(io" ":'in,—l) = fy(xo”" "x;ty-l)'

We will show that this definition of f, does not depend on m. For, take any
other upper bound m’; let z,” =z, ,,.. Then

” ” — ’ ’
fy(xo sty xn,—l) = fy(xo [ xn,—l)-
Indeed, let m <0, m' <0, and :v,"’::vﬂp‘,,,. Then

fy(xoﬂf R x:,-l)‘Pm’o = fy(xom’ Tty x:y—l) = fv(xoi’ Tt x;z,-l)?’mo

since ¢, and ¢,,, are homomorphisms.
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Definition 4. The algebra W, ={A4,; F) is called the direct limit of the
direct family of algebras and will be denoted by lim <.

Let us define the mapping
P —> &, for xe A,

Then ¢, is & homomorphism of ¥, into A,,. Furthermore, we have for all
t = j that ¢;p;0 =@ie. Thus, we have:

Lemma 1. Extend the direct family of algebras o/ by adding to I the
symbol oo and partially order I U {00} by i < oo for all ¢ € I while keeping the
partial ordering in I; add U, to the family of algebras and the mappings
P for 1€ I U {0} to the family of mappings (pewo S the identity map on
A,). Then the resultant system o ,, is again a direct system of algebras.

If all the ¢,; are 1-1, then so are the ¢,,. Indeed, take z,y € 4; and
suppose that ;. =y@i., that is, £=4¢. Then there exists a j=¢ such that
2@y =yp;; and since all the ¢;; are 1-1, we infer that x=y. Thus, we have
proved the following lemma.

Lemma 2. If in a direct family of algebras, all the ¢;; (¢ < j) are 1-1, then
all the ¢, are 1-1.

Let. us give an example of a direct family of algebras.

Let U be an algebra. Define I by: B € I if and only if (B; F) is a finitely
generated subalgebra of 2.

Let us define a direct family of algebras as follows: (i) the directed
partially ordered set is taken to be {(I; <); (ii) %, is defined as {i; F);
(iii) all the ¢;; (¢ <j) are defined as identity mappings (xg;;=x).

Then the direct limit can be easily shown to be isomorphic to the
algebra %A.

Lemma 3. Every algebra is isomorphic to a direct limit of finitely
generated algebras.

Now we define our second construction.

Definition 5. An inverse family of sets o7 is defined to be a triplet of the
following objects:

(i) 4 directed partially ordered set {I; <>, called the carrier of o7 ;
(i) sets A; for each i€ 1;

(i) mappings @, for all j <1 such that ;} maps A; into A;, ¢ lp’ =, if
1252k, and @ is the identity mapping for all i € I.
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For an inverse family 7, take the direct product [T (4;|7 € I) and let
A® consist of those p € [T (4,4 € I) for which

@) =p(j) if 2.

Definition 6. A is called the inverse limit of the inverse family of sets;
in notation, A* =lim 7.

Definition 7. An inverse family of algebras & is defined to be a triplet
of the following objects:

(i) A directed partially ordered set {I; <>;
(ii) algebras A, ={A;; F> for each i€ 1;
(iii) homomorphwms ot of U, into A, for all = j such that ool =g if
12j2k and @ is the identity mapping for all ¢ € I.

Clearly, the base sets form an inverse family of sets.
We can prove that A*={4>; F) is a subalgebra of [T (|4 I), if
A® # @ . Indeed, if

P=f7(po,"',Pn,—1)’ Po,“':Pn,—1€A°° a'nd 7’;.7:

then
Z’( (Pf "fy Po(@ "’pny—l( ))(Pf
) —frp 9’}3" ’pny—l(")q’j)
= f7 po(]): SR spny—l(j))
= p(J)
and sope 4%.

Definition 8. If A* # &, then A® is called the inverse limit of the inverse
family of algebras; in notation, A =lim 7.
Let us define the mapping
@°:p—>p(i) for peAd~.
Then ¢;® is a homomorphism of A® into ; and we have that

(Pim(Pit = ¢;° if +2j

Lemma 4. If we extend the tnverse family of algebras as in Lemma 1 by
adding oo to I, the algebra (A®; F to the family of algebras and the mappings
{@° | i e I} U {pZ} (where @3 is the identity mapping on A®) to the family
of mappings, then the resultant family o/ is again an tnverse family of
algebras.
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The assumption 4% # & is really necessary in Definition 8. Consider the
following inverse family of sets. <I; <) is the partially ordered set of
positive integers with their natural ordering, A;=1I for each i € I, and
zpt=2""Jz if i 2 j. If p were in A%, then

p(l) = 2'p(i+1)

for every ¢ which is clearly impossible. Thus, we get that:

The tnverse limit of nonvoid sets may be void.

However, the following result shows that this cannot happen if all the
sets are finite and nonvoid.

Theorem 1. The inverse limit of finite nonvoid sets is always nonvoid.

Remark. A special case of Theorem 1 is called Kénig’s Lemma. Theorem
1 is usually derived from Tihonov’s Theorem, that the product of compact
spaces is also compact, see, for instance, S. Eilenberg and W. Steenrod,
loc. cit., p. 217. The proof, presented here, can be easily formulated so that
it uses only the prime ideal theorem of Boolean algebras (Theorem 6.7).

Proof. Let the inverse family &/ be given as in Definition 5 and let
each A, be finite, nonvoid. For each finite J < I set

B;={p|pe[l(4|iel) andfor ijeJ,i2j, p@E)p} = p(j)}
Since <{I; <) is directed, each B, is nonvoid. Also,

B, N B, 2 B,

ouly>

therefore by the corollary to Theorem 6.7, there exists a prime dual ideal
2 of all subsets of [ ] (4, |4 € I), such that B, € 2 for all finite J < 1I.

Let 2, denote the ¢-th projection of 2, that is, for C e 2, form
C;=Ce/={a|ac 4, and a=p(i) for some peC} and 2,={C;|C € D}.
9, is a dual ideal of B(4,); the claim that it is prime is equivalent to the
statement that if B€ 4,; BN X # o for all X € 9,, then B € 9, (Exercise
0.84). So let us assume that BN X # & for all X € 9, and set B=B(e/)~1.
ForDe9, BN D+ &, since Bei’ N De=B N D,;# &, so we can pick a
pe D with p(i) € B and then p € B=B(e)~1. Thus Be 2 and Bel=
B e 9;, which was to be proved.

Since 2, is a prime dual ideal of the finite Boolean algebra B(4,), there
exists an q; € 4,, such that X € 9, if and only if g, € X.

Define p €[] (4|7 €I) by p(i)=a,. We claim that p € lim .

We proved that for every i € I, and D € @,, D(¢/)~* € 2. Thus if j <3,
then {a;}(e;/) ! and {a;}(e;)~* € @, and

{a(e/)"t n{aj(e/))"* N By, €D,
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so there exists a ¢ € B, ;, with ¢(i)=a, and ¢(j)=a,. Thus a,p;=a,, which
completes the proof of p € lim ..

The following is an example of an inverse family of algebras.
Let 8, j €J, be a family of algebras and define I to be the set of all
nonvoid finite subsets of J. Then define:

(i) The partially ordered set to be <I; <);
(i) =TT (B,|je);
(iii) for ¢o24,, ¢; ‘o is the natural homomorphism of [T (B, | 4 € %) onto
I'1(B;|j €1,). (See the definition preceding Theorem 19.4.)

Lemma 5. The family defined above is an inverse family of algebras and
the inverse limit is isomorphic to [ (B,|j € J).

The analogue of Lemma 2 holds for inverse limits.

Lemma 6. If in an inverse family of algebras all the ¢} are 1-1, then all
the ¢, are also 1-1.

Proof. Let p,qe A® and pp,® =qp,®, that is, p(¢)=q(s). Let j € I; we
want to prove that p(j)=q(j). Indeed, if & is any upper bound of 7 and j,
then p(k)p*=q(k)p¥, so p(k)=q(k). Therefore p(j)=p(k)p*=q(k)p/ =
¢(j), which was to be proved.

Direct limits and especially inverse limits are very hard to visualize
in general. A happy exception is when the carrier is well ordered. We will
prove that in many cases we can restrict ourselves to this special case
(Theorems 4 and 5). In preparation for these, we will show that certain
“double” direct (inverse) limits can be represented as ‘“simple” direct
(inverse) limits (Theorems 2 and 3).

As a first step, we prove the following lemma.

Let o be a direct family (inverse family) of algebras as given in Defini-
tion 3 (Definition 7) and let J =1 such that (J; < is also a directed par-
tially ordered set. We will denote by &, the direct family (inverse family)
of algebras whose carrier is (J; <) and whose algebras in &, are %, i € J,
with the associated homomorphisms ¢,; (¢,!) With ¢, j € J.

Lemma 7. Let <7 be a direct family (inverse family) of algebras with
carrier {I; <) and let J<I be such that {J; <> is a directed partially
ordered set cofinal with (I; < (i.e., for every i € I there exists a j € J such
that ¢ < j). Then li_En A li_IP &; (lim &/~ lim &7}).
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Proof. First we prove the isomorphism statement for direct limits. Set
lim &/ ={A4,; F), lim &/;,={4,’; F>. An element of 4, is of the form
£;, where the index I indicates that we take its closure in the family 7.
Consider the mapping

Y & — &,

where x € 4;, j € J and the subscript J denotes closure in &7;. The domain
of yis A, since if £, € A, € 4;, ¢ € I, then there exists a j € J such that
1 <J; since x =xp,;, we get £, = (:@:u), and xg,; € 4,, j € J. It is obvious that
¢ maps 4, onto 4, and  is a homomorphism. To show that ¢ is 1-1,
assume that £,=¢, and x € 4,, y € 4;,4,j €J. Then there exists a keJ
such that 1<k, j <k and zp,; =yp;. This implies that £ =4, so  is 1-1.
This completes the proof of the isomorphism.

Now let &/ be an inverse family; set lim &/={A4%®; F) and lim &/;=
{4,%; F). Consider the mapping

Y:p—>py

which maps A® into 4,® (p is an element of [ ] (4,|¢ € I) and p, denotes
the restriction of p to J). Then ¢ is a homomorphism. Now let ¢ € 4,*. If
g=py and 1 € I, then for any j € J with ¢ <j we have p(¢)=q(j )@/, that is,
q determines p and so ¢ is 1-1. To prove that i is onto, for any given
ge A,*, define a p e[ (4,|4 € I) as follows: For a given i € I choose a
j€dJ with 1< j and define p(:) =q(j)g;. Note that p is well defined because
if <4’ €J, then we can choose an upper bound » of j and j' in {J; =).
Then

4())ed = gn)p e = q(n)e = g(n)p, el = q(§')} s

and thus p(¢) does not depend on the choice of j.
To prove that p € A%, choose 1<k, 1, k € I. Then there exists an [ €J
with k <lsince {J; <) is cofinal with {I; <). Let us compute:

pk)p = gD = ql)@! = p(i),

which was to be proved.
Since py=q is trivial, we conclude that ¢ is an isomorphism, completing
the proof of the lemma.

Let o7 be a direct family of algebras with carrier <I; <) and assume
that I=J (I,|j € P), such that {I;; <) is a directed partially ordered
set of (I; <> and (P; £) is also a directed partially ordered set and
I,c1,if j <.
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Let us introduce the following notations. Let lim o/ ={A4,; F) and
lim o), ={4,’; F). If j<1, then define the mapping

Yyu: £, — £, where xe A, forsome kel

The family consisting of {(P; <, the algebras (4,’; F>, and the map-
pings ;; will be denoted by 2/ P.

Theorem 2. o7|P is a direct family of algebras and we have the following
1somorphism:

lim & ~ lim &7/ P.

Proof. i;; maps 4.7 into 4,} if j<4. It is obviously a homomorphism
and all ¢,; are identity mappings. Further, if jS1<k (j, ¢, k € P), then

531,*/’11‘/% = fl,‘/’tk = Cgl,c = ﬁI,‘/’lk-
Thus, ;py=y;,. This proves that &7/P is a direct family of algebras.
Set li_r.n H|P=(A,"; F>.

Let z € A;, 1 € I and choose a p e P such that 1 € I,,; set y=%; (€ 4.7)

and define the mapping  of 4, into 4,," by
i & — Gp.

We claim that i is the required isomorphism.

To prove that ¢ is well defined, let x € 4;,z2€ 4,, £, =%,,1e€1I,,jel,
y==%;,, w=£%;_; we have to prove that §,=1,. Since £, =%, for some k e I
we have i<k, j<k and xg, =2p;; therefore £; =Z; for any r € P with
psr, gsr, and ke I,. Thus y,, =2; b, =% =%, =% o, =wiy,, Which
means §p =1, which was to be proved.

¢ is onto since if we take §p, where y € 4,7, and y=%;,, x € 4;, 1€ I,
then

i & — §p.

We will now prove that ¢ is 1-1. Take z € 4, and ve 4 and let 1 € I,

and j € I, and set

M
"31, =Y Vi, = Yo

and assume that (§,)p=(#2)p. Then there exists an r € P with p<r, ¢<r
such that

4 A
xlp‘l’pr = vlq‘/'qn
that is,
A A

£ =9 .

r 14

This implies that ¢ and j have an upper bound m in I, such that zg;, =
vp;n. Consequently, £; =%;, which was to be proved.
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Since i obviously preserves the operations, ¢ is an isomorphism. This
completes the proof of Theorem 2.

Let &7 be an inverse family of algebras with carrier (I; <) and assume
that I= | (I,|p € P) such that (I,; <) is a directed partially ordered
set and I, =1, if p=q.

We introduce the following notation:

lim & = (4%; F),
lim o/, = <4,”; F).
If p <q, we define the mapping
$" 9 = g1,

where g € 4, and g;, is the restriction of g to I,,. Let us denote the system
just defined by //P.

Theorem 3. <//P is an inverse family and we have the following iso-
morphism:
lim & ~ lim &7/ P.

Proof. It is obvious that &//P is an inverse family. Set
1i3_n AP = {A4,"; F).
We set up the mapping
¥ 9 —>Jo
ge A=, where f, €[] (4,% | p € P) is defined by
fo(P) = g1, € 4,

To prove that f, € 4;°, we have to show that fi(q)¢,?=f,(p) if p=gq,
which is trivial since

o @ = g1.9:° = g1, = fo(D).

If we are given f,, then we can reconstruct g since if 4 € I, then 1 € I, for
some p € P and g(¢)=(f,(p))(¢); thus, ¢ is 1-1.
¥ is onto because if h € 4;, then define g by

g() = (M(p))(), el
g is well defined. For, assume that also 1 € I, and let p, ¢ <r. Then
M)y = (h(r), = h(p).



§21. DIRECT AND INVERSE LIMITS OF ALGEBRAS 137
Thus,

and, similarly,
(h(r)(2) = (A(g))(3).
Therefore, (k(p))(¢)=(%(q))(¢), which was to be proved.
Now it is obvious that g € A® and that g=h.

Since ¢ is obviously a homomorphism, it is an isomorphism; this
completes the proof of Theorem 3.

Let o/ be a direct family (inverse family) of algebras such that the
carrier {(I; <) is well ordered. Then we call &7 a well-ordered direct family
(tnverse family).

A class of algebras K is called algebraic if it is closed under isomorphism,

that is, if an algebra is isomorphic to an algebra in K, then it is contained
in K.

Theorem 4. Let K be an algebraic class. If K is closed under well-ordered
direct limits, then K is closed under arbitrary direct limats.

Proof. Take a direct family 7 with the carrier (I; <). If the theorem
were not true, then we could choose & such that lim &/ ¢ K and |I|=m

is the smallest possible. m < X, is impossible, since then {I; <) is a finite
directed partially ordered set, hence it has a largest element 7; ({1 }; <) is
cofinal with <I; <, so by Lemma 7, lim &/~ %, € K.

If m2 R, then by Exercise 1.44, I= (I, ]y <), where « is an ordinal,
d,; £)isdirected, I,cI;ify<8<a,and |I,| <|I|=m. Thuslim &/, € K

(since m was minimal) and by Theorem 2,

lim &/ ~ lim &7/ P,

where P={y|y<o}. Thus by assumption, lim &//Pe K, and so
lim o/ € K, a contradiction. The proof is thus complete.

Theorem 5. Let K be an algebraic class. If K is closed under well-ordered
inverse limits, then K 1is closed under arbitrary inverse limits.

Proof. Same as that of Theorem 4, using Theorem 3 rather than
Theorem 2.

Now we want to investigate equality of polynomials on direct and
inverse limits.
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Let o be a direct family of algebras %, with carrier (I; <>, lim &/ =%,

p and q m-ary polynomial symbols, £0°, ..., £r 1, 4,0° ..., dr e A,
xed,,- - -,x’"‘leA,m_l,y°eA,°,---,y”“leA,mﬂ.

Lemma 8. p(£,°,---, £F 1) =¢q(4,° - - -, 97" ?) in Y, if and only if there
exists an upper bound ¢ of ig, -+, tm_1, Jos " * *» Jm—1 SUch that we have

.p(xoq’10b ) xm-l‘Pt,,._l;) = q(y°<p,°,, Tty 3/"'_19’/,,._ 11)-

Or, equivalently, p(£,°, - -, &P~ 1) #q(d,° - - -, §7~1) if and only if for any
upper bound j of 19, +, Uy _1, 50, * *» Jm—1 We have

Pz ™ 2o ) #F QY s s YT P 1e)-

Proof. If x=p(@®pi, * ) 2" 191y _) =AY 'Piotr "> Y P y) =Y
then zg,, =yp,, and so p(£,°, - - -, P~ 1) =q(4,% - - -, 47~ 1). Conversely, if
P(&O, -+, &) =q(g%---,9P" '), then for any upper bound %k of

@o"",':m—1,jo,"',.7.m—1,
= p@Pips s " @ k) = UY sk Y Py k) = Y5

thus there exists an 1>k with zp,=yep.

Now let o/ be an inverse limit family of algebras, lim &/ =%%, p and q
m-ary polynomial symbols, 0, - .-, fm=1,¢% ..., g"n~1e 4.

Lemma 9. p(f°,---,fm" 1) =¢q(g°%---, g™ 1) in A° if and only if
p(f°@), -+, f™1(3))=q(g°(%), - - -, g™~ 1(¢)) in A, for all v € 1. Or, equiva-
lently, p(f°, -+, f™"1) #4(g% - -+, g™ ") in A™ if and only if there exists an
vel such that for all jzi, p(f°(j),- -, f" () #4G°0) -+ 9" ()
wn A,

Proof. Trivial by Lemma 19.2.

Lemmas 8 and 9 indicate that to 1-1 direct limits correspond the onto
inverse limits of polynomial algebras and to onto inverse limits correspond
the 1-1 direct limits of polynomial algebras. A similar situation can be
found in the next result. We prove a statement on direct limits by using
inverse limits.

Theorem 6 (G. Grdtzer [5]). Let U be a finite algebra. An algebra B has a
homomorphism into U if and only if every finite relative subalgebra € of B
has a homomorphism into A.
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Proof. The “only if”’ part is trivial. To prove the ““if”’ part, for a finite
relative subalgebra € of B let T(C) denote the set of all homomorphisms
of € into A. By assumption, 7'(C) is not void. Let I denote the set of all
finite nonvoid subsets of B; then <(I; <) is a directed partially ordered
set. Let the inverse family 9 consist of all T(C), C e I, let (I; <) be the
carrier of o7, and for C; =C,, let ¢$2 be defined by

X‘ng = Xc, for xe T(C,).

Then o7 is an inverse family of finite nonvoid sets, so by Theorem 1,
lim & is nonvoid. Let y € lim .

For b € B, let by be defined as follows:

by = blxed))-

Obviously, by =b(yp:*) for every C containing b. Therefore, it is trivial
to check that % is a homomorphism of 8 into . This completes the proof
of Theorem 5.

The following result can be proved in exactly the same way as Theorem 6.

Theorem 7 (G. Gratzer [5]). Let U be a finite algebra. The algebra B is
isomorphic to a subdirect power of W if and only if for every u,ve B, u#v
there exists a finite subset C,, of B such that (i) w, v € Cy,; (ii) for every finite
subset C containing C.,, there is @ mapping ¢ from C onto A such that uep #ve
and o is @ homomorphism of € onto .

§22. PRODUCTS ASSOCIATED WITH THE DIRECT PRODUCT

We can construct new algebras from given ones by taking subalgebras
or homomorphic images of the direct product of given algebras.

Definition 1 (Weak direct product). Let W,=(4;; F>, v eI, be algebras
and form the direct product T (U;|i€I). Let B< T] (4|1 €el).
We call 8={B; F) a weak direct product of the algebras U; provided:

(i) B is a subalgebra of [T (%; |4 e I);
(ii) f, g € B imply that {i|f(i)#g(:)} is a finite subset of I;
(iii) if fe B,ge[](4;|ieI)and {i|f(3)#g(i)} is finite, then g € B.

Note that the weak direct product does not necessarily exist (see
Exercises 45, 46).

A common generalization of direct product and weak direct product,
due to J. Hashimoto [1], is the following.
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Definition 2. Let W;=<4,; F),i €I, be given algebras and let L be an
ideal of the Boolean algebra

B) = (PI); 0, N0, @, I).

Let B ] (4, | 1€ I). B={B; F) is called an L-restricted direct product
of the N, i€ I, if

(i) B is a subalgebra of [T (¥, |s € I);
(ii) f, g € B imply that

{0 @) # g6)}e L;
(iii) fe Band g€ (4;|i ) and {i|f(i)#g(i)} € L imply that g € B.

A weak direct product is an L-restricted direct product with L equal to
the ideal of all finite subsets of I. If L= P(I), then the L-restricted direct
product is isomorphic to [T (%;|¢ € I). Finally, if L={@}, then an L-
restricted direct product is a one-element algebra (if the product exists).

Let B be an L-restricted direct product of %, ¢ € I. If one of the ¥, is
a one-element algebra, then it can be omitted from the direct product, so
from now on we assume that |4;|#1 forallieI.Ifi eI and {¢} ¢ L, then
f(@)=g(0) for every f, g € B. Hence, we can also assume that L contains
all finite subsets of I. Let ©, be the congruence relation of 8 under which
f=9(0,) if and only if f(i)=g(i). For any ideal J < L, we define a congru-
ence relation of B by f=¢(0,) if and only if {i|f(:)#g(i)} eJ. If we
introduce the notation D(f, g)={¢|f(i)#g(s)}, then f=¢(®,) if and only
if D(f, g) € J. Obviously, ©;= Op,, where P,={M | M € L and i ¢ M}.

Lemma 1. The complete sublattice (X; <) of €(B) generated by the O,
consists of the ©, with J< L. Further, the correspondence J — O, is an
1somorphism between (L) and (Z; £, where Q={L; <).

Proof. If M € L, then O,,= (" (0| ¢ M). Further,

0,=V (G)(M]lMGJ)-

Thus, if we prove that the ®, form a complete sublattice and J — @, is
an isomorphism, then we are through.
The following statement is trivial.

(i) If Jo=Jy, then O, < 0,,.
Next, we prove the following:

(i) V (G)J)\l A€ A)= 0y, ren



§22. PRODUCTS ASSOCIATED WITH THE DIRECT PRODUCT 141

By (i), < is trivial. Set J= \/ (J5| A€ A). Let us assume then that
f=9(0,). Then D(f, g) € J; hence, we can find A, ---, A, € A and Z, € J,,
such that D(f,¢g)=2,Y---U Z, and Z; N Z;= & if i#).

For k=0,1,..-,n, define h,e[](4;|iel) by hy=f, h,=g and
he(2)=hy_1(¢) if ¢ ¢ Z, and h(¢)=g(:) if ¢ € Z. Then D(h,_;, by) < Z,.
Thus, hk_lzhk(Q,Ak); therefore, f=g( \/ (0,,| A€ A)), which was to be
proved.

(iii) A (05, | A€ A)= 0y, rear

Indeed, f=g( A (©,,| A€ A)) if and only if D(f, g) eJ, for all A€ A,
which is equivalent to D(f, g) € A (J»| A € A), which, in turn, is equivalent
t0 f=9(Opuy 1 2e)-

(iv) I J,<J,, then ©,, < 0,,.

Let M edJ,, M ¢J,, and fe B. Define g €[] (4;|4€I) by g(i)=f(s) if
i1¢ M and g(s)#f(z) if 1€ M (this can be done since |4;|>1). Then
D(f,g)=M € L. Thus, g € B. By construction, f=¢(0, ) and f#¢(©;,).

Statements (i)—(iv) complete the proof of Lemma 1.

Definition 3. Let T be a set of congruence relations of . T is called
completely permutable if whenever we are given (0, | A € A), O, € Z, and set

=N (0,|v#AveA),

and we are given (x, | A€ A), 2, € A with xy=z,(@\V @) forall A, ve A, then
we get that there exists an x € A such that x=1x,(0,) for all A € A.

Corollary. If S is completely permutable, then any two congruence relations
of T are permutable.

Proof. Indeed, let A={A, v}. Then ¢,=©, and ¢,= 0,. By complete
permutability, z,==,(0,V 0,) implies that for some z, z,=x(0,) and
x,=x(0,); thus, zy=x,(0,0,). This means that 0,0,=0,v 0,, ie,
®, and O, are permutable.

For further results on the relationship between permutability and
complete permutability, see the Exercises.

Let = be as in Lemma 1. Then, by Lemma 1, (3; <) is an algebraic
lattice since it is isomorphic to ¥(&). Therefore, the compact elements of
(Z; £> are the ones of the form ©;, where J is a principal ideal,
J=(M), M € L. Let K(£) denote the compact elements of (X; < ).

Lemma 2. K(X) is completely permutable.
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Proof. Let ©,€Z, Ae A and ©,=0,, where J,=(M,]. Let f, € B for
Ae A and fy=f,(p,V ¢,). Note that f=¢(0,) if and only if D(f, g) < M,;
hence,

Difnfs) = N (M, |p# DU N M, |p#y).

Or, equivalently (' is complementation in B(I)),
D f 2 UM, [w# N0 UM |w#v) 2 M) A M,
Summarizing:
ifteM,nM,), then f,(¢) = f,(2).
Now we define f € [] (4|4 € I) as follows: f(¢) is arbitrary if
i€ (My]|re A);

f@)=f\(3)if ¢ € M,’ for some A € A.
What we have proved above shows that no contradiction is obtained if
t is an element of M," and of M, at the same time, since then f,(¢)=f,(z).
By definition,

D(f.f,) = M, e L,

which proves that fe B and that f=f,(©,), completing the proof of
Lemma 2.

Now we state the main result.

Theorem 1 (J. Hashimoto [1]). Let A be an algebra with more than one
element, let I be a nonvoid set, and let L be an ideal of B(I), containing all
Jinite subsets of 1. Then U is tsomorphic to an L-restricted direct product of
algebras with more than one element if and only if €(A) has a complete sub-
lattice (Z; < such that the following hold :

(i) w,t€Z;
(i) CK(Z); = >x<L; )
(iii) K(X) 28 completely permutable.

Proof. To prove the necessity of conditions (i)-(iii), observe that
w= 0, and = 0;; thus, w, ¢ € 2. The isomorphism in (ii) is set up by

Ouwy —> M
by Lemma 1.
(iii) was proved in Lemma 2.
To prove the sufficiency, let us assume that €(2A) has a complete sub-
lattice (Z; <) satisfying (i), (ii), and (iii). Condition (ii) implies that
<I(R); <) is isomorphic to (X; <. Let this isomorphism be J — ©,. For
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i € I, consider the ideal Py;={M | M € L, i ¢ M}. Then P;# Lsince {i} ¢ P;.
Set ©,=0p . Since P;#L, 0,#; thus A;=A/O, has more than one
element. For ze€ 4, define f, €[] (4,|i€l) by f.(i)=[x]®; and set
A*={f,|x e A}.

(a) * — f, is an isomorphism between % and the subalgebra A* of
I[1@|iel).

Indeed, the mapping is obviously an onto homomorphism and it is 1-1
Since A (@1 l 7: EI) = A (@P‘ | 7: € I)= GA(PHiel): @(ﬂ)=w.

(b) z=y(Oy) if and only if D(f,, f,) =M.

Since (M]= A (P,|i¢ M), if 2=y(0,y), then x=y(0Op,) for all i ¢ M,
that is, x=y(0,) for all ¢ ¢ M, which in turn implies that D(f,, f,) & M,
and conversely.

(c) Iff, g € A*, then D(f, g) € L.
Let f=f, and g=f,. Then z=y(:), i.e., r=y(0O,). Since
L=V (M|MeD),
we get that 2=y( Oy mery), that is,
z=y(V (Ou| M e L)).

Thus, there exist a sequence x=x¢, ,,-- -, ¥,=y and My, -+, M,_, €L
such that z,=x,,,(0gu,). Set M=M,U ... U M,_;. Then z=y(0On,).
Thus, by (b), D(f,, f,)SM € L, which was to be proved.

(d) Iffe A*, ge[] (4;|iel)and D(f,g) € L, then g e A*.

If © is a congruence relation of %, let @* denote the corresponding
congruence relation of A*, i.e., f,=f,(O*) if and only if x=y(0). Set

T* = (0*| @ e}

Then K(X*) is again completely permutable.

For ¢ € I, denote Oy by @, Then, by (b), fr=f,(¢*) if and only if
D(f,, f,) ={i}. By the corollary to Definition 3, ®, and ¢, are permutable
and it is obvious that O,V ¢;=..

Since A (0, i€ I)=w, A* is a subdirect product of the A;; thus, we can
find g, € A* with ¢,(:)=g(z). Then g,=f(:); thus, ¢;=f(0,* v ¢;*). By the
permutability of ©,* and ¢* there exists an element k, € A* such that
9:=h(0*) and h,=f(p*).

Set ;= O,y Then o= A (¥;|j#1) if i € D(f, g). We will apply
the complete permutability to the congruence relations {{;* | i € I} and the
elements {k, |7 € I}. In order to do that, we must prove that

hl = hj((Pi* \% <P,*) for 7/’.7 € D(f, g)
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Indeed, f=hi(p*) and f=hip;*). Thus, h;=h)(e*V ¢*). By complete
permutability, there exists an element ge A* such that g=h,(),*) for
alli el

Since g=hy(;*), D(g, by) = D(f, 9)—{i}. Hence, g(¢)=h,(¢) if 1 € D(f, 9).
However, h;=g,(0,*); thus, A(¢)=g,(¢)=g(¢). This proves that g(i)=g(¢)
for ¢ € D(f, g).

If ©¢ D(f,g), then g(¢)=h,i) for all je D(f,g). Since f=he*),
D(f, h;)< D(f, 9); thus, f(i)=g(¢)=hy(¢) for any ¢ € I. Therefore, g(i)=
3(i) for i ¢ D(f, g).

Thus, we have proved that g=g € 4*, which completes the proof of (d).

(c) and (d) prove the sufficiency of the conditions of Theorem 1.

A construction which in a sense is the dual of an L-restricted direct
product is the following.

Let L be given as in Definition 2. We define a relation on [ (4;|7 € I)
as follows:

f=9(0,) ifandonlyif {i|f(z) # g(i)} e L.
Lemma 3. O is a congruence relation of [ (%] € I).

Proof. ®, is reflexive since g € L; ®, is symmetric since the definition
is symmetric; ®, is transitive since

{|f(0) # R} < (] f(6) # g()} v {i] g(5) # A(i)}.
©®, has the substitution property because if g, =k,(0.), then

{ilfy(hm o ':hn,—l)(i) a fy(go, Tty gn,_l)(i)} <
U ({i| k(d) # gi(i)}| & < n,) € L.

Definition 4. The quotient algebra of [T (; |1 € I) modulo O is called the
L-reduced direct product (also called reduced product) of the algebras A,
1 € I, and s denoted by

[1(Q|iel).

If A=A, for all ¢ € I, we will use the notation A,!, and we will call A" a
reduced direct power.

It is hard to trace the origin of reduced direct products. Special cases
have been known for a long time. For some historical notes, see T. Frayne,
A. C. Morel, and D. S. Scott [1].

In the special case L={o}, [, (% |iel)= [](¥]|iel), while if
L= P(I), then [T, (¥; |7 € I)=1?, the one element algebra.
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Suppose ©), is a congruence relation of %;. We define a relation which
will be denoted by [T, (©,|4 € I) on [T, (4| € I) as follows:

f=9(I1.(0;]iel)) ifandonlyif {i|f() # g(i)(®,)}€ L.
Lemma 4. [, (0,| € I) is a congruence relation of T], (%;|4 € I).
Proof. Same as that of Lemma 3.

Definition 5 (J. £04 [2]). A prime product (also called ultra product) ¢s
an L-reduced product where L is a prime ideal.

The significance of prime products will be made clear in Chapter 6.
These notions do not yield a new construction if L is a principal ideal.

Lemma 5. Let L={X| X < A}, where A<I. Then
[T.|ie) =TT ]|ieI-A).
Proof. Let fe [ (4|4 €I) and consider the mapping
$:[f10L > fi-a
It is trivial that i is the required isomorphism.

Corollary. 4 prime product of algebras with respect to a principal prime
tdeal is always isomorphic to one of the given algebras.

Proof. Trivial since a principal prime ideal is always of the form
P ={X|a¢X}
where a € I; in this case, 4 =1—{a}.

Let L be an ideal of B(I). Then 9={X|I—X € L} is a dual ideal of
B(I). Furthermore,

D(f,g)e L ifandonlyif {i|f(i) = g(i)}e2.

Thus f=¢(0,) if and only if {i|f(¢)=g(:)} € 2. Therefore, if f=g(0g) is
defined by {i|f(i)=g(i)} € 2, then O,= 0.

Definition 6. Let 2 be a dual ideal of B(I). Then

[To |iel) =TT (|iel)0g

ts called a D-reduced product of the U,, ¢ € I. Again Agy' will denote reduced
direct powers.

Corollary. Definitions 4 and 6 give exactly the same algebras.
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If 9 is prime, then a 2-reduced product is again called a prime product;
in that special case, L= P(I)— 9.

It is sometimes more convenient to use dual ideals rather than ideals.

A general associative law for reduced products is given in the following
lemma (see T. Frayne, A. C. Morel, and D. S. Scott [1]).

Lemma 6. Let 7 be a partition of I; for B € n let Dy be a dual ideal of
B(B) and let 2’ be a dual ideal of B(w). Set

D ={X|XcIand{B|Benand XN BeDz}ec D'}
Then 2 is a dual ideal of B(I) and

I[le (9[1“51)'; T 1o (H@B (ﬂ,IiEB)IBE'rr).
Proof. An isomorphism ¢ is given by

$:[f105 —[9]10g:,

where fe[] (4;|i€1), geT] (1o, (4|7 B)| Ben) and g is defined
by
9(B) = [f5]99,.
The proof is left as an exercise.
* * *

The third, and final, construction is a generalization of direct powers
due to A. L. Foster [2].

Let U be an algebra, I a set, and B=U’. Any o € B is a function from
I into A; thus it induces a partition =, of I: 2, y € X € =, is equivalent to
a(z)=a(y) € A. Thus we can associate with every a € o(I) < 4 a subset I,
as follows: 1€, if and only if «(i)=a. Set I,= @ if a ¢ «(I). Then
o*:a — I, is a mapping of 4 onto =*, where = is a partition of I and
m* =7 U {@}; «* has the properties that (i) if a#b, then ac* N bo*= 7 ;
(ii) U (ae*|a € A)=1. We can, of course, consider o* as a mapping of 4
into P(I). Conversely, if « is a mapping of 4 into P(I) with properties (i)
and (ii), then we can define a mapping & of I into 4 by &: ¢ - a if {i} Saa.
(i) shows that & is well defined, and (ii) guarantees that the domain of
aisl.

Let ag, - - -, @y, _; € A' and a=f,(0g, - -, @,, ;). How can we find o* in
terms of «o*, - -, o _;? Since a(i)=f,(co(2), - - -, @y, -1(1)), o(¢)=a if and
only if there exist ag=ay(i), - -, @y, _1 =0, _1(¢), @g, -+, ay,_; € A with
a=f/ao, -, a,, _1). In other words,

i eaa* if and only if there exist a,,---,a, ;€4 with

: ; * =
T EQoog*, -, 1€y, 1o,y and a = f(ag, -, Gy, _q).
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In formula:
a'(fr(am tecy o‘n,-—l))*
= U @x*N---N an,—l“:,—llfy(ao’ Sy Oy, ) = ), (1)
and we set f,(«o*, - - -, af, 1) =f,(0g, - - -, an, - 1)*. Note that if there are no
such ag, - - -, @,, -1, then we get the void union, which is &.

Thus we have proved the following result.

Lemma 7. Let % be an algebra and I a set. Define the set A[B(I)] as the
set of all mappings o of A into P(I) satisfying

(i) if a#Db, then ae Nba= &}
(ii) U (ac|ae d)=1I.

Define the operations f, on A[B(I)]by (1), and let A[R(I)] denote the resulting
algebra. Then A[B(I)] is isomorphic to W!; an isomorphism is given by
o — &, where a € A{B(I)] and & : I — A 1is defined by &(1)=a if and only if
¢t € ac. The tnverse of o — & is B — B* where B € A, B* € A[B(I)] and B* is
defined by i € ap* if and only if B(i)=a.

Lemma 7 gives the motivation for the following definition.

Definition 7 (4. L. Foster [2]). Let A be an algebra and B a Boolean
algebra; we assume that if U is infinite, then B is complete. We define the set
A[B] to be the set of all mappings « of A into B satisfying the following two
conditions:

(i) tf a#b, a,be A, then ac Aba=0;
(ii) V (aa|a e d)=1.
We define the n-ary operation f on A[B] by f(eg, - -+, ay_1) =P, where B is
given by
(111) a’B= V (aOO‘O/\ o NGy g0y |f(a0: ) an-1)=a’)’

The resulting algebra A[B] is called the extension of A by B, or a Boolean
extension of .

Corollary. If B~ B(I), then A[B] ts isomorphic to A,

It should be noted that every finite Boolean algebra is isomorphic to
some B(I), hence this construction gives something new only for infinite
Boolean algebras. Also, every Boolean algebra is a subalgebra of some
B(I); thus A[B] is always a subalgebra of a direct power.
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Some important properties of this construction are given in Theorem 2.

Theorem 2. (i) if f ¢s any n-ary function on A, then Definition T (iii)
defines an n-ary function f on A[B];

(ii) if @ function f on A is a composition of functions f=g(hg, - -+, hp_1),
then f=§(ﬁo, Tt ﬁm—l);

(iil) for a € A, define {,c A[B] by al,=1, bl,=0 if b#a; set A=
{L.| @ € A}. Then % is a subalgebra of A[B] and ¢: a — {, is an isomorphism
between A and U; furthermore, for any mn-ary function f on A, if
flao, -+, an_1)=a, then f(%% ceey Gy ) =ap;

(iv) of p ¢s an n-ary polynomial symbol, p=(p)u, then = (p)us];

(v) if f is an n-ary algebraic function on A which we get from the poly-
nomial (p)y by substituting some x, by a,, then f is an algebraic function which
we get from the polynomial (plurm) by substituting the same z, by {,; )

(vi) if f and g are n-ary functions on A, then f=g if and only if f=4.

Remark. Theorem 2 (i) makes Definition 7 legitimate, since it proves
that for the B defined by Definition 7 (iii), we have 8 € A[B].

Proof. The proofs of (i)-(vi) are simple computations. To simplify the
notations, we will sometimes assume that the functions considered are
binary.

(i) Let f be +, ag+a; =8; to show B € A[B] we have to verify Defini-
tion 7 (i) and (ii). If a#b, then"
aB A BB =\ (aeag A oy |ag+a, = a) AV (boao A by, | bo+b, = b)
=V (@ A @0y A boog A by |ag+a, = aand by+b, = b)
= O,
since either a,# b, and 80 ago A bog =0 or a, #b, and then a,o; A bya; =0.
Now we compute:
V (@B|ae )=\ (axo Aaye; | ag+a,=aanda e 4)
=V (@@ Aayoyy | ag, a; € A)
=V (@0 @€ 4)N V (@0, | @, € 4)
=1A1=1
(ii) Let f(xq, ;) =ho(2o, %1) +hy (%o, ;) and «g, «; € A[B]. Thenifa € 4,

af(ao, o) =V (@oxo A @y04 |f(ao’ a,) = a)
=V (@ A a3, I ho(ao, @1) +hi(ao, a1) = a).  (2)
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On the other hand,

a(ﬁo(%a “1)'7‘51(“0» ;)

=V (@oho(aos @1) A @by, ;) |ao+a, = a)
=V (V (oo A byey | ho(bo, by) = ag) A

V (Coto A 1a1 | By(co, €1) = a1 | ap+a; = a)
=V (boxo A bioy A coog A c10‘1“"0((’0, b;) = ag, hi(co, ¢1) = a4

and ap+a, = a)

= (if by #co, then byoy A cooy = 0;if by #c,, then byoy A ¢y = 0,

80 we can assume that b, = ¢, and b, = ¢,)

=V (boog A byoy | ho(bo, b1) + (b, b)) = a). (3)

(2) and (3) prove (ii).
(iii) and (vi). {, € A[®B] is trivial. It is easy to see that for any n-ary
function f on 4, we have

Py

g/(ao.m.an-l) = f(Cao: ) Ca,,_l)’

proving (iii). This also proves (vi), since if f#g, then, for example,
f(ao’ Tt an—l)#g(am ] a’n—l) and so

f(;aor"”Cau_l) # é(gaof"’,{a"_l)'
(iv) Let «g, -+, @,y € A[B], a € A. Then

aé™Mog, s n_1) = V (@xo A -+ A an‘-lan—1|etn(a0! cey Quy) = @)
= (e™agp, -+, 8,_,) = a if and only if @, = a)
=V (@ A -+ A an—lan-—llal = a)

=V (ao“olaoeA) Ao A V(at—lc‘t—ll“t-leA)
Aaog Ao AN (a'n—lan—lla'n—IEA)
=1/\---A1Aaa,/\~-~Al=aa,,

80 &," = (x;)uys]. Now (iv) follows from (ii).
(v) Trivial from (i)-(iv).
This completes the proof of Theorem 2.

Corollary 1. PB™(A)~ P(A[B]).

Corollary 2. If we identify U with A, then A[B] ts an extension of A with
the property that if f and g are algebraic functions on U, then f=g on A if and
only if f=§ on AB].

We want now to relate the construction A[®B] to constructions we already
know. Since we can do it only for finite algebras, from now on we assume
that % is a finite algebra, |4| > 1 (the case |4| =1 is trivial).
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We introduce an operation (transformation) in the direct power A’.

Definition 8. Let o, B8, y, 6 € AY; T(e, B, y, 8) =¢ is defined as follows

) = {y(i) if ali) = B0)
3) if oli) # B

Definition 9. A subalgebra € of A is called a normal subdirect power if
the following conditions are satisfied:

(i) € contains the diagonal;
(ii) if «, B,y, 8 €C, then T(c, B, y, 8) €C.

Remark. It is obvious from (i) that a normal subdirect power is indeed a
subdirect power.

Now we prove that the extension of a finite algebra by a Boolean
algebra is always isomorphic to a normal subdirect power.

Theorem 3. Let A=<A4; F) be a finite algebra, B a Boolean algebra, and
B’ an atomic Boolean algebra which contains B as a subalgebra. Let I denote
the set of atoms of B'. For « € A[B] define & : I — A by a(t)=a if and only
if iSaa. Set A(I)={a|oc A[B]}c A'. Then A(I)=CA); F) is a normal
subdirect power of W and o« — & ts an isomorphism between A[B] and A(I).

Proof. 9B is isomorphic to a subalgebra of (/) and therefore (since % is
finite) A[B] is isomorphic to a subalgebra of A[B(I)]; ¢ : « — & is by
Lemma 7 an isomorphism between A[B(J)] and A’; thus ¢ also sets up an
isomorphism between A[B] and A(I). Thus it remains to prove that (i)
and (ii) of Definition 9 hold for (7).

Fora € 4, let ¢, € A" be defined by e,(1)=a for all ¢ € I. ¢, is an element
of the diagonal.

(i) is obvious since {,p=c¢, ({, was defined in Theorem 2 (iii).)

To prove (i) let &, B, 7, § € A(I). Set z=\/ (axAaB|a € A) and define

e: A— Bby

ae = (ay A z) V (ad A 2') for ac 4.
e € A[B], since ifa, b € 4, a#b, then
ae Abe=[ay Az)V (@ad AZ)] A[(by Ax) Vv (b6 A 2')] =0,
since ay Aby=ad Abd=z Az’ =0. Also,

V (ae|lac ) = \/ (ay A z|acd) v\ (@d A 2'|ac A)

=xzvVva =1
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We claim that T'(&, f, 7, §)=%. Let ¢ € I; if &¢)=p(), then i<aw and
¢ Sap for some a € A and so ¢ <. Thus 1 < ae if and only if i <ay, and so
&(1)=7p(4). Similarly, if &(¢) # (i), then &(:) = §(¢ ). This completes the proof
of Theorem 3.

The converse of Theorem 3 also holds.

Theorem 4. Let A(I) be a normal subdirect power of N. Then B(I) has a
subalgebra B such that A(I) is isomorphic to A[B].

Proof. We set
B = {X| X < I and there exist a € 4, « € A(I) with X = {i| «(s) = a}}.

Then I={i|¢,(i)=a} for any ac 4, so I € B. If X={i|a(i)=a} € B and
b#a, set B=T(e, e, € ). Then I—-X={i|B(i)=b}e B. Also if
Y={i|y(i)=c} (y € A(I), c € A), then first we define = T'(y, &, &, &) and
observe that Y ={i|8(i)=a}. Now put x="T(c, &, «, ). Then X U Y=
{i| x(¢)=a}. Thus B is a subalgebra of P(I).

For every « € A(I), we define a mapping «* of 4 into B:

ao* = {i| (i) = a}.
We claim that o«* € A[B]. Indeed, if a b, then
ae* N be* = {i|a(i) = a, and oft) = b} = &.
Also,
U (ae*|ae d) = 1,

since ¢ € o(s)o*, for all ¢ € I.

Then ¢: @ — o«* maps A([) into A[B]. We claim that pis an isomorphism.
@ is a 1-1 homomorphism by Lemma 7.

It remains to prove that ¢ is onto. Let x € A[B], A={aq, -, Gr_1}
ax = X;. Then X,={j|o(j)=a'} for some a'cd, o€A(I). Set
ag="T(c" £,0, &4y, &,,) and for 0 <k <n, o =T(c*, es%, €4, €a,)-

Now we define By, for k <n, by recursion. 8, =«, and

Be = T, €q,» €0, P-1) for 0 <k <.

It is simple to check by induction on % that if ¢<k, and j € X, then

B.(j)=a,. Thus B*_,=x and so ¢ is onto. This completes the proof of
Theorem 4.

In the special case of f-algebras, Theorems 3 and 4 were proved by
A. L. Foster [2]. For the general case, see M. I. Gould and G. Grétzer [1].
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§23. OPERATORS ON CLASSES OF ALGEBRAS

X is an operator if for every class K of algebras, X(K) is also a class of
algebras. If X and Y are operators, so is XY defined by

XY(K) = X(Y(K)).
X2 will stand for XX.
The most frequently used operators are I, S, H, P, P* P, Ps*, L, L,

defined as follows:

I(K): isomorphic copies of algebras of K;

S(K): subalgebras of algebras of K

H(K): homomorphic images of algebras of K;

P(K): direct products of nonvoid families of algebras of K;
P*(K): direct products of algebras of K

P(K): subdirect products of nonvoid families of algebras of K;
P *(K): subdirect products of algebras of K;

_I:(K ): direct limits of algebras of K

L(K): inverse limits of algebras of K.
Thus K is an algebraic class if I(K)=K.

Lemma 1. If X is any of the operators introduced above, then XI1=1IX. If
X=LH,S,P, P* P, Ps* then X2=X.

Proof. All these statements are trivial.

Theorem 1. Let K be a class of algebras. Then:

(i) SH(K)< HS(K);
(ii) PH(K) < HP(K);
(iii) PS(K)<SP(K);
(iv) PH(K) < HP(K).

Proof. All these inclusions were proved before.

Call K an equational class (also called variety, and primitive class) if
K is nonvoid and H(K)< K, S(K)< K, P(K)<K.

The motivation for calling such a class an equational class will be given
in the next chapter.

Theorem 2. Let K be a class of algebras. Then HSP(K) is an equational
class containing K and it is the smallest equational class containing K.
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Proof. It is obvious that if K= K, and K, is an equational class, then
HSP(K)< K,. To prove that HSP(K) is equational we make the following
computations, using Lemma 1 and Theorem 1:

HHSP(K) = HSP(K);
SHSP(K) = HSSP(K) = HSP(K);
PHSP(K) < HPSP(K) < HSPP(K) = HSP(K),

completing the proof of Theorem 2.

Equational classes of groups have been thoroughly investigated. (See
H. Neumann’s book, Varieties of Groups, Ergebnisse der Mathematik,
Springer-Verlag, Berlin-West, 1967.)

Theorem 3 (S. R. Kogalovskii [10]). Let K be a class of algebras. Then
HP(K) is the smallest equational class containing K.

Proof. It is enough to prove that
S(K) = HP4(K)

and then the statement follows as in the proof of Theorem 2.
Let % € S(K), that is, % is a subalgebra of some B € K. Take a set I with
|[I| =R, and define a subset C' of B! by the rule:
For f e B!, f € C if and only if for some b € 4, {i| f(¢) #b} is finite.
Then € € Ps(B). Now we define a congruence relation ® of €:

f = 9(0) if and only if {i|f(i) # g(¢)} is finite.

Then for every f € C there is exactly one b € 4 such that f=f,(®), where
fo(2)=0b for all i e I and f,#f.(®) if b,ce A, b#c. Thus A € H(€) and so

A € HP4(K),
which was to be proved.

See also B. M. Schein [2].

EXERCISES

1. Let 9, be algebras, ie I and I=\J (I,|jeJ), I, I; =2 if j#;. Then
[T|ie) = TI(ITQ|iel)|jed).

2. Prove the following generalization of Theorems 19.2 and 19.3.
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11.

12.

13.

14.

15.

CH. 3. CONSTRUCTIONS OF ALGEBRAS

The direct decompositions of 9 into n algebras are determined by n
congruence relations @y, - - -, ®,_; with the following properties:

(i) OgA -+ AOp_1=uw;
(li) (@o/\ s A ®‘_1)V ®‘=L,7;=1,"',n—l;
(iii) @A --- A ©;_; and O, are permutable, t=1,-.-,n—1.

. Prove that (iii) in Ex. 2 cannot be replaced by

(iii") O; and ©, are permutable, 0=1, j<n—1.

. Prove that the sublattice of the congruence lattice generated by the ©,

of Ex. 2 is isomorphic to the Boolean lattice of 2" elements. Prove that
any two congruence relations in this sublattice are permutable.

. Let 0 be a nullary operation and assume that in %, f,(0, - - -, 0)=0 for

every y < o(r). Prove that ¥ is isomorphic to a subalgebra of 9 x B.

. Let K be an equational class of algebras, having 0 and + as operations,

such that 0 +a=a+0=a in every algebra of K. Prove that if €=U xB,
then € has two subalgebras %’ and B’ such that (i) a — <a, 0) is an
isomorphism between A and A’; (ii) b — <0,b)> is an isomorphism
between B and B’; (iii)) A’ N B’={0}; (iv) every c € C has a unique
representation c=a+b,ae A’,be B’.

. Is the converse of Ex. 6 true?
. Let € be a subalgebra of [T (%, | 1 € I), ® a congruence relation on €, and

B a finite relative subalgebra of €/®. Is it true that there exists a finite
I’ < I such that €g;, has a quotient algebra €g,/®, containing B as a
relative subalgebra ? (Theorem 19.4 is the special case ®=w.)

. Show that B™(Wy x W) = B (W) x P™(A;) may not hold.
10.

Let B be a homomorphic image of . Then P™(B) is a homomorphic
image of L™ (A).

Let A be isomorphic to a subdirect product of the B;, ¢ € I and let B, be
isomorphic to a subdirect product of the €, j € I,. Then U is isomorphic
to a subdirect product of the €, j € U (I; I 1elI).

2 is isomorphic to a subdirect product of the 8By, ¢ € I if and only if for
a,be A,a#b, there exists an ¢ € I and a homomorphism g, of 2 onto B,
with ag, # b, and every 4 is chosen for some a, b.

Is it true that an algebra U is subdirectly irreducible if and only if
|A] =1 or &) has exactly one atom ?

Let ¥ be a semilattice with 0 (as in §6), I an ideal of F andae F,a ¢ I.
Then there exists an ideal J such that a ¢ J, J 21 and J is maximal with
respect to these two properties.

Let S(I, a) denote the set of all ideals J defined in Ex. 14. Prove that
J €S, a) for some I and a if and only if one of the following two
conditions hold:

(1) J is completely meet irreducible, that is, if J= ") (J,|ie K) and
Jy € I($), then J =J, for some 7 € K;

(ii) there is an ideal L such that L>J and if for the ideal N, NoJ
then No L.
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Prove that I=(" (J | J €S(I,a),a€ F, a ¢ I).

Use Ex. 16 to prove Theorem 20.3.

(G. Birkhoff and O. Frink [1]) Every congruence relation is the complete
meet of completely meet irreducible congruence relations.

Apply Ex. 14-16 to subalgebra lattices.

A is a diagonal subdirect power of B if U is a subalgebra of some direct
power of B, containing the diagonal. Prove that  is isomorphic to a
diagonal subdirect power of B if and only if % has a subalgebra B’
isomorphic to B and for a, b€ 4, a#b, there exists an endomorphism
@ of A such that Ap=B’, ap#bep and cp=c for all c € B’.

(R. P. Dilworth) Let & be a lattice. It is a direct product of a finite
number of simple lattices if and only if any two congruence relations
permute and the congruence lattice is a finite Boolean lattice.

An algebra is a subdirect produgt of simple algebras if and only if w is the
intersection of dual atoms of the congruence lattice (@ is a dual atom if
®<.and O < ® <. implies that ©® = ®).

(T. Tanaka [1]) Let o be an algebra with a Boolean congruence lattice.
Prove that 9 is a subdirect product of simple algebras. Does the con-
verse hold provided that €(Q) is distributive? (Combine Ex. 22 with
Ex. 0.79.)

Let Q be a distributive lattice, @ € L and a is neither 0 nor 1. Define
0, ®:z=y(0O) if and only if zAa=yAa; x=y(®) if and only if
zVa=yVa. Prove that ® and @ are congruence relations and that
OAND=w.

25. (G. Birkhoff) Every distributive lattice of more than one element is a

26.

217.

28.

29.

30.

31.

32.

subdirect product of two-element lattices. (Combine Ex. 24 with
Theorem 20.3.)

(M. H. Stone) Every Boolean algebra is a subdirect product of two-
element Boolean algebras.

Prove that every semilattice (F; v ) with more than one element is a
subdirect product of two-element semilattices.

Which semigroups with more than one element are subdirect powers of a
given two-element semigroup ?

Let 9 be the direct product of the algebras 9;, ¢ € I. Then the following
statements hold.

(i) for every i € I there is a homomorphism ¢; of 2 onto 2;;

(ii) let B be an algebra and let iy, ¢ € I, be a family of homomorphisms,
Yy: B— A,; then there exists a unique homomorphism i: B — A such
that Y, =1y, for all 7 € I.

If an algebra has properties (i) and (ii) of Ex. 29, then it is isomorphic to
the direct product of the %, ¢ € I.

If the congruence relations on 9 permute, then the same holds for every
homomorphic image of .

Let &/ be a direct family of algebras 9, with the carrier (I; =). Let
Bc ] (A,|ie I) be defined by f € B if and only if there exists a k€ [
such that for all k¢ =<j, f(i)p,;=f(j). Prove that B is a subalgebra.
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Define a relation ® on B of Ex. 32 as follows: f=g(0) if there exists an
3 € I such that f(j)=g(j) for all j=1. Prove that

(i) O is a congruence relation of B;
(ii) B/O is isomorphic to lim 7.

Prove that an equational class is closed under direct limits.

Let & be a direct family of algebras. If all ¢, are 1-1, then all ¢;(z <)
are 1-1.

Let & be a direct family of algebras. If all the ¢, (i < j) are onto, then all
the ¢, are onto.

Prove that the converse of Ex. 36 is false.

Prove that the converse of Lemma 21.6 is false.

Let &7 be an inverse family of algebras with carrier (I; <). If all the
@, ° are onto, then all ¢,! are onto.

Construct an inverse family &/ of nonvoid sets such that all maps are
onto, and the inverse limit is void (G. Higman and A. H. Stone [1]).
(Hint: Use the following sets and maps. Let w; be the first uncountable
ordinal. For a < w; set A,={y|y<a}, B,={f|f€[0, 1)4 and f is mono-
tone}, where [0, 1) is the real interval [0, 1) and f is monotone if y <3
implies f(y) <f(8). For a<f<w; let ¢,°: Bs— B, be defined by
f %B =f Ag -)

Prove that the converse of Ex. 39 is false.

Prove that the converse of Ex. 39 holds if |I| = X,.

Let & be an inverse family of algebras. Is it true that all the ¢;' are 1-1
and onto if and only if all the ¢, are 1-1 and onto?

Give an example of algebras %, ¢ € I, which have no weak direct product.
A weak direct product of the algebras ;, ¢ € I, exists if and only if there
exists & p € [] (4|4 € I) such that for each y <o(r),

{i| () # f(pG), -+, P(E))}
is finite.
Find conditions for the existence of L-restricted direct products.
U is a weak subdirect product of the Uy, 4 € I, if A is a subalgebra of B,
which is a weak direct product of the o, and Ae/=A, for i € I. Give
necessary and sufficient conditions for an algebra U to be isomorphic to
a weak subdirect product.
(J. Hashimoto [1]) Define L-restricted subdirect products. Give necessary
and sufficient conditions for 9 to be isomorphic to an L-restricted
subdirect product.
A subdirect power U of B is bounded if for every ¢ € A, I is finite (where
I is the exponent of B). Find conditions for 9 to be a bounded diagonal
subdirect power of B.
Generalize Ex. 49 to L-bounded, where L is an ideal of B(I).
Why is it necessary to assume in Definition 22.2 that L is an ideal ?
(J. Hashimoto [1]) Let @y, -, ®,_; be congruence relations of 2% and
let ;= A (®,| j#1). Prove that if ¢, -, p,—; are permutable, then
@ - -+, @, _, are completely permutable.



53.

54.

55.

56.

57.

58.

59.

60.
61.

62.

63.

64.

EXERCISES 157

Does the result of the previous exercise extend to the case when we have
infinitely many @,?

(J. Hashimoto [1]) Let % be an algebra and <Z; <) a complete sublattice
of €(A). Let Q denote the set of compact elements of <X; <. Prove that
Z is completely permutable if and only if Q is completely permutable.
Give necessary and sufficient conditions on 9 for ¥ to be isomorphic to
the weak direct product of the algebras ,, 7 € I.

A dual ideal 2 of B(I) is called m-complete, where m is an infinite
cardinal, if X, € 9, jeJ, [J|<m imply N (X;|jeJ) € 2. Let 2 be an
m-complete dual ideal of P(I), I= U (Iklk € K), where I, N I;v= @
if k#k’, and |K| <m. Set 9,=2 N P(I) for k € K. Then

[o@|ieI) = TT(I1a.(|ie L) | ke K).

(see e.g., T. Frayne, A. C. Morel, and D. S. Scott [1]).
Let 2 be a dual ideal of ‘B(I), J € @, and D, =2 N P(J). Then

[To@|ie )= [1a, (W] ed).

If 2 and 2’ are dual ideals of B(I) and D < P’, then [a.(U, I 1el)isa
homomorphic image of [ o (QI;I 1€ I).

Prove that if A is infinite, Theorem 22.3 fails to hold, since A[B] is not a
subalgebra of A[B(I)].

Prove that if A is infinite, Theorem 22.4 fails to hold.

Let us call A an f,-algebra, if there are two elements 0, 1 € 4 and two
binary algebraic functions +,- such that 0.a=a-0=0, 1l.-a=a-1=a,
a+0=0+a=a for every a € A. Prove that if % is an f, -algebra, then so is
A[WB] with ¢, and {;, and also every diagonal subdirect power of U is an
f«-algebra with ¢, and ;.

Let U be an f,-algebra. For a € 4 define in A’ a unary operation P, by

. 1 if o) =a
Pala)e) = {o if o) # a
Let B be a diagonal subdirect power of . Prove that 8 is a normal sub-
direct power if and only if « € B implies P,(a) € B for all a € 4. (This is
essentially a result of A. L. Foster[2]; see M. I. Gould and G. Grétzer [1].)
A bounded normal subdirect power is a normal subdirect power which is
bounded (see Ex. 49). A bounded extension of the algebra 2 by an arbi-
trary Boolean algebra ¥ is defined as in Definition 22.7, with the re-
striction that we consider only mappings a: 4 — B for which {al aa # 0}
is finite. Prove Theorems 22.3 and 22.4 for infinite algebras, bounded
extensions, and bounded normal subdirect powers. (This generalizes a
result of A. L. Foster [2]; see M. I. Gould and G. Grétzer [1].)
Let A be a finite algebra and B a Boolean algebra. By Theorem 22.3 we
can represent AB] as a normal subdirect power Y(I). In Theorem 22.4
we construct a subalgebra B’ of P(I) such that A(I) is isomorphic to
A(B’]. Prove that B~ B'.
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66.
67.

68.
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Let A be a finite algebra, let B, B’ be Boolean algebras where B’ is a
homomorphic image of B. Prove that A[B’] is & homomorphic image of
AB].

Extend Ex. 64 and 65 to infinite algebras using bounded extensions.
Which of the operators of §23 satisfy the law

X(K U L) = X(K) U X(L)

for any two classes K, L of algebras?
Show by examples that if we reverse the inclusions in (i)—(iv) of Theorem
23.1, then we get false statements.
Prove that statement (iii) of Theorem 23.1 is equivalent to the Axiom of
Choice.

* * *

The following notion (due to B. H. Neumann [2]) will be used in Ex. 70-76:

Let K be a class of algebras. Let 9 € C(K) (C for covering) if there exist
algebras ;€ K, 7€ I and 1-1 homomorphisms ¢, of U, into A such that

A=

70.
71.
72.
73.
74.
75.
76.
71.
78.

79.

80.

81.
82.

83.

84.

U (Aygy| i € I). The results of Ex. 7076 are from G. Griitzer [9].

Prove that SC(K)=CS(K).

Prove that HC(K)= CH(K) if there are no nullary operations.

Prove that PC(K)< CP(K) and that the reverse inclusion is false.

Prove that PyC(K)%E CPy(K).

Prove that CPs(K)& PsC(K).

Prove the previous three exercises for P* and Pg*.

Let K be an equational class. Prove that C(K) is also an equational class.
Characterize P*(K)— P(K) and Pg*(K)— Pg(K).

Let R< A x A be an equivalence relation on 4. Prove that R is a con-
gruence relation of A=<A4; F> if and only if (R; F) is a subalgebra of
A2,

Let p < A x B be a mapping of 4 into B. Prove that ¢ is & homomorphism
of A=<A4; F> into B=<B; F) if and only if {(p; F is a subalgebra of
AxB.

Let X and Y be operators. X =Y if X(K)= Y(K) for every class of algebras
K. If H is a set of operators, the semigroup €(H) generated by H consists
of all finite products X, - - - X,,_; where X; € H with equality as defined
above. Prove that for H={I, H, S}, €(H) has 6 elements.

Find an algebraic class K such that ILIL(K) # IL(K).

Find an algebraic class K such that Il_il‘lly'l(K) # I£1'1(K); where
El“l is the operator for 1— 1 direct limits. (A. H. Kruse [2].)

Let %A, and A, be partial algebras. Let <{{aq, bo), - * +; {@n, -1, bn, ~1>> be
in D(f,, Ao xA;) if and only if <ag,:--,an,-1>€ D(f,, o) and
Cbos * + 5 by, —1> € D(fy, Az). The resulting partial algebra is Ao x Ay =A.
Prove that the mappings ¢q: {a, b> — a and ¢;: {a, b)) — b are homo-
morphisms of U onto A, and A;, respectively, but the ¢, need not be full

or strong.
Prove Theorem 19.2 for partial algebras.
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Prove that under the conditions of Theorem 19.3 for a partial algebra %
we can only conclude that 9 is isomorphic to a weak subalgebra of
A/ Oy x A/ O;.

Does Theorem 20.3 hold for partial algebras?

Prove the results of §19 and §20 for infinitary algebras.

Is it always possible to define the direct limit of infinitary algebras as an
infinitary algebra ?

Prove Theorem 23.1 and 23.2 for infinitary algebras.

Which inclusions of Theorem 23.1 fail to hold for partial algebras?

The spectrum S =Sp(K) of an equational class K is the set of all integers n
such that there is an n-element algebra in K. Prove that 1€.S and
S-S<S (i.e., S is closed under multiplication).

Let S be a set of positive integers and let 1 €S and S-S<8S. Then there
exists an equational class K such that S=Sp(K). (G. Grdtzer [12].)
(Hint: Use Ex. 6.53 or 6.54.)

Let o7 be a direct family of algebras % such that all ¢,; are 1-1. Prove
that sZ[Ss‘”"(l_i)m &) is isomorphic to a subalgebra of lim &7;, where &/, has

the same carrier as 27, the algebras in &7, are P (%,), and if ¢ = j, then
@4 is defined by (p)u, ¢, = (Pl

Get a similar isomorphism for inverse limit families of algebras for which
all ¢,! are onto.

Express Ex. 93 and 94 in terms of operators.

Let U, ¢ € I be partial algebras, A= [] (%[,|ie I) (see Ex. 84), and e/
the ¢-th projection. If B is a relative subalgebra of % and Be/=A, for
4 € I, then 9B is said to be a subdirect product of the ;. Prove that every
partial algebra is isomorphic to a subdirect product of subdirectly irre-
ducible partial algebras. (See H. E. Pickett [1]; this result is not ex-
plicitly stated, but it follows easily from Theorem 7 and Theorem 8, F,
E,, and D, part c, or directly from Theorem 5, using the fact that
Lemma 10.3 holds for partial algebras.)

For a given infinite cardinal m, find an equational class K such that the
one element algebra is the only finite algebra in K and every infinite
algebra in K is of cardinality =m and there is an algebra of cardinality
min K.

Let &7 be a direct family of algebras as in Definition 21.3. Consider the
following two properties for an algebra 8 and for a family (¢ | 1el) of
homomorphisms, where g, is & homomorphism of %, into B:

(1) for 4,5 € I,i=<j, we have that ¢;= gy p;;

(ii) if € is an algebra, and (a/;‘I 4 € I) is a family of homomorphisms
where i, is 8 homomorphism of 9, into € such that for ¢, j € I, 1< j, we
have that ;= g, then there exists a unigue homomorphism ¢ of B
into € with ¢p=14, for all i e I.

Prove that conditions (i) and (ii) characterize the direct limit of &/
along with the homomorphisms (g« |4 € I).
State and prove a characterization of inverse limits along with
(s l iel).
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Let 2 be a dual ideal of (1) and let (%I,I 1 € I) be a family of algebras.
For H € 2 set

B, = [TQ|icH)

and for H,Ke 9,H2K, let gy be the natural homomorphism of
By onto B. Prove that the algebras By, with the homomorphisms @y,
form a direct family .o/ over the carrier (2, = ). Prove that

lim o/ = [1g Q| iel).

Prove that the statement: “S(I,a)# @ for any a¢ I” (notation of
Ex. 15) is equivalent to the Axiom of Choice.

Prove that the statement of Theorem 20.3 is equivalent to the Axiom of
Choice. (G. Grétzer, Notices Amer. Math. Soc. 14(1967), 133; this solves
a problem proposed in H. Rubin and J. E. Rubin, Equivalents of the
Axiom of Choice. North-Holland, Amsterdam, 1963, p. 15). (Hint: Prove
that Theorem 18.3 can be proved without the Axiom of Choice. Use
Theorem 11.3 to verify that Theorem 20.3 is equivalent to Ex. 16, which,
in turn, is equivalent to “S(I, a)# @ for any a € I”’, so a reference to
Ex. 101 completes the proof.)

Let AC denote the Axiom of Choice, BR(K) that G. Birkhoff’s Repre-
sentation Theorem (Theorem 20.3) holds in the class K, let PI denote the
Prime Ideal Theorem (Theorem 6.7) and D, L, G, R be the class of dis-
tributive lattices, lattices, groups and rings, respectively. Prove the
implications in the following diagram:

BR(D)
e \
ACT—_——— > BR@) \ PI

BR(R)

PROBLEMS

It follows from Theorem 23.2, from Corollary 1 to Theorem 22.2, and
from Theorem 26.3, that if % is an algebra and B is a Boolean algebra,
then A[B] € HSP({A}). Find an explicit expression of Y in terms of H, §
and P. (If A is finite, this was done in Theorems 22.3 and 22.4.)

Given the algebras U and €, find necessary and sufficient conditions for the
existence of a Boolean algebra 8 with A[B]~ €. When is this B unique
(up to isomorphism) ?

For what classes K of algebras is it true that K1={QI[%]IQI €K, B an
arbitrary Boolean algebra} is an equational class? (This is the case if
K ={U}, where U is a primal algebra; see §27.)
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Find all subsets H of {I, H, S, P, P*, P, Ps*, L, L, C} which generate
- <

finite semigroups (see Ex. 80), and describe these semigroups. (Some
recent results: The semigroup generated by H, S, and P has been described
by D. Pigozzi, Notices Amer. Math. Soc. 13 (1966), 829. The finiteness of
the semigroups with the generating sets {H, S, P, Ps}, {H, S, P, C} has
been proved by E. M. Nelson, Master Thesis, McMaster University, 1966.)
For those H of Problem 24 which generate infinite semigroups, give a
“normal form’’ theorem, i.e., call certain products ‘““normal”’, prove that
all normal products represent distinct operators, and that every product
of the operators in H equals a normal product.

For an algebraic class K, define K¢ for every ordinal « as follows: K° = K,
Ke+l= I_I:(K“), Ktmay — | J (Ko | v). Is it possible to find for every ordinal
« & class such that K**1#K%? Is it true that for every class K there
exists an o with K%= K%+1? If this is so, which ordinals can occur as a
smallest such « ? (See Ex. 82.§

The same as Problem 26 but for inverse limits. (See Ex. 81.)

Describe the finite semigroups of Problem 24 without the Axiom of
Choice.

Let K be an equational class, % a finite algebra, and

Ky = {8|B e K and U ¢ IS(B)}.

Under what conditions is Ky an equational class ?

Which implications can be reversed in Ex. 103? Is BR(@) = PI or
PI = BR(GQ) true?

Is the statement that HSP(K) is an equational class equivalent to the
Axiom of Choice ?



CHAPTER 4
FREE ALGEBRAS

One of the most useful concepts in algebra is that of the free algebra.
We devote three chapters to the study of free algebras, Chapters 4, 5, and
8. In this first chapter on this topic, we first examine in detail the basic
problems of existence and construction of free algebras, and the connec-
tion of free algebras with identities. Then we apply free algebras to prob-
lems of equational completeness and also to the word problem. We also
discuss free algebras generated by partial algebras.

§24. DEFINITION AND BASIC PROPERTIES

Given a class K of algebrast and a set X, it is sometimes very useful to
know the most general algebra in K generated by X. For instance, if K is
the class of semigroups and X ={x}, then there are many semigroups
generated by X. The simplest one is <X; - >, in which z-x=x; and the most
general is (Y; ->, where ¥ ={x, 22, 2%,---, 2", .- - } and a"- 2™ =a"*™. The
second semigroup is the ““most general’ because every semigroup which
can be generated by one element is a homomorphic image of {Y; - . Such
algebras will be called free and a formal definition follows.

Definition 1 (G. Birkhoff [2]). Let K be a class of algebras, let A € K and
let X=(x;|1€l) be a family of elements of U such that A is generated by
{x;| 1 € I}. A is said to be a free algebra over K, with the free generating
family X if for any B € K, and for any mapping y: I — B, there is a homo-
morphism @ of A into B such that ip=x,p for all : € I.

The diagram on the next page illustrates this definition.

The case I= & is allowed if and only if there are nullary operations.

{x;| 1 € I} is a free generating set of %A over K.

Thus a free algebra over K must belong to K. However, in a class K,
there need not be any free algebra. Also, if % € K and ¥ is free over K,
then 2 may have more than one free generating set.

t A “class of algebras’ will always be assumed to be ‘“‘a class of algebras of the
same type’.
162
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A

We will use the notation g(m) for an algebra, free over K, which has
a free generating family (, |4 € I) with |I|=m. If I={y|y <a} for some
ordinal «, we will write §x(«). Thus if F4(0) exists, then there are nullary
operations.

The following two observations are very important.

Corollary 1. The homomorphism ¢ in Definition 1 is unique.
This is obvious from Theorem 12.2 since [{z; |i € I}]= 4.

Corollary 2. If K contains an algebra with more than one element and A
has a free generating family (x;|1 € I) over K, and 1, j € I,1+#], then x, #%,.

Indeed, take a B € K with | B| 1. Then there is a mapping  of I into B
with 4 # i and so z,p # 2,p, which implies z; #z,.

If for i, j € I, i+#j, we have x,#x,, then Definition 1 can be somewhat
more simply stated: any mapping p: x; — b, (b; € B) can be extended to a
homomorphism ¢ of A into B.

Two basic properties of free algebras are given in the following theorems.

Theorem 1. If Jy(m) extists, then it is unique up to 1somorphism.

Theorem 2. If X(a) exists, then
k() = BO(r)/ O,

where O is the congruence relation defined in §8.

Theorem 2 implies Theorem 1. However, we give a proof of Theorem 1
independent of Theorem 2.
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Proof of Theorem 1. Let A and B have the free generating families
(a,|7€I) and (b;| 7 € I), respectively, over some class K. Consider the
maps g: t — a; and ,;: ¢ — b;; then there exist homomorphisms ¢, of B
into %A and ¢, of A into B with b,py=a;, and a,p, =b, for all 7 € I. Thus
bi(pop1) =b; and ay(p,pe)=a; for all ¢ € I, hence ¢, is an isomorphism of
B with A.

Proof of Theorem 2. Let Z={x,, -, ,, - - )y, Where (z,|y<a) is a
free generating family of (). Then by the corollary to Theorem 8.2

k() = BO(7)/ O,

Thus, to verify Theorem 2, it suffices to show that ©,= @4. Obviously,
®;= Ok. To show the reverse inequality, we have to verify that ©;< ©,,
where @={ag, -, ay, *>yca,a,€ A, A e K, which is trivial from the
existence of a homomorphism ¢ with z,p=a, for all y <.

Corollary 1. ©;= O is a necessary and sufficient condition for the algebra
generated by T to be free.

Corollary 2. Fx(e)x Fx(B) if a=F.
Corollary 3. R(7) is isomorphic to Fye) ().

Lemma 1. Let B<a and let K be a class of algebras for which S(K)< K.
If & k() exists, then so does Fx(B).

Proof. Let z,,- - -, z,, - - -, y <a, be a free generating family of §,(«) and
consider the subalgebra 8 generated by z,, - - -, ,, -+ -, y<p. Then B € K.
Let

‘/’:'}’_>a77 y <8,

be a mapping of {y | y <B} into A € K. Extend this mapping arbitrarily to a
mapping ¢ of all y with y < «; then there is a homomorphism ¢ with y =z,
for y < «. Then g is the required homomorphism. This shows that

B~ Fk(B)

More generally, we have the following statement.

Corollary 1. If S(K)< K and Fy(m) exists, then any non-void subset of
the free generating set generates a free algebra.

Corollary 2. Let « be a lvmit ordinal. Then Fk(«) vs 1somorphic to a 1-1
darect limit of the Fx(B), B<c.
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Theorem 3. Consider an algebra O and let [X]=Q. Define a class
K(2, X) of algebras in the following manner: A € K(Q, X) if and only if
every mapping p: X — A can be extended to a homomorphism of L. into A.
Then K(L, X) is an equational class.

Proof. S[K(D, X)]= K(£, X) is trivial.

Let A e K(Q, X), B be a homomorphic image of A under the homo-
morphism i, and p be a mapping of X into B; take any mapping p:X — A
with 2p=xp. Let ¢ be an extension of 7 to a homomorphism. Then gy
extends p to a homomorphism, that is, 8 € K(D, X). K(Q, X) is closed
under direct products by Lemma 19.1.

The following results are immediate consequences of Theorem 3.

Theorem 4. The generating set X of the algebra Q. is free with respect to
some class K if and only if

e KD, X).

Proof. By definition, every free algebra must belong to the class over
which it is free. Conversely, if £ € K(£, X), then £ is free over K(Q, X).

Theorem 5. Let Q. be an algebra. Then the following three conditions are
equivalent:

(i) £ s a free algebra over some class K ;
(ii) £ 8 a free algebra over an equational class K ;
(iii) £ ¢s free over the class consisting of Q only.

Corollary 1. X is a free generating set of O with respect to some class K if
and only if any mapping of X into Q can be extended to an endomorphism.

Remark. By (iii) of Theorem 5, we can talk about free algebras and free
generating sets without specifying the class K.

Corollary 2. Let . be a free algebra with the free generating set X over
some class K. Then

K < K(Q, X).

Theorem 2 gives a representation of the free algebra as a quotient
algebra of the polynomial algebra. The following result, which is due to
B. H. Neumann [2] characterizes the congruence relations which occur in
such representations.
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Theorem 6. Let () be a free algebra with free generating family
(2, |y <), and let © be a congruence relation of F(a). Then F(e)| O is a free
algebra with the free generating family ([z,]0 | y <) if and only if © is fully
invariant.

Proof. Assume that © is fully invariant. Let p be a mapping of the
[#,]© into F(«)/® and

p:(x,]0 —[a,]0, y < a
Let

P x, = a,, Yy <«

and let ¢ be an extension of $ to an endomorphism of &(«x). By Lemma
12.6, @: []® — [2¢]® is an extension of p to an endomorphism.

By Corollary 1 to Theorem 5, this means that F(«)/® is free.

Now assume that J(«)/® is freely generated by the [x,]® and let ¢ be
an arbitrary endomorphism of F(«).

In order to show that ® is fully invariant by Lemma 12.6 it suffices to
show that

¢:[a]O — [ap]©
is an endomorphism of F(«)/®
Consider the mapping
p: [%,]0 — [2,9] 0.
Since §(«)/ O is free, p can be extended to an endomorphism ¢'.
Then ([z,]0)g=([z,]0)¢". Now, if a=p(x,,, -, 2 ), then

([@]O)¢’ = p([2,,]0, - - -, [z,, -1]10)¢" = p(([2,,]0)¢’, - - -, ([xy, -1]1O)¢")
= P([xyo?’]@, R [xy,.—l‘?’]@) = [p(xyoq” s Ty, —1?’)]9
= [Py, -+, Ty, —1)9]O = [ag] O = ([2]0)¢.

Hence, ¢'= ¢, i.e., ¢ is an endomorphism, which was to be proved.

Corollary. There ts a 1-1 correspondence between free algebras with o
generators and the fully invariant congruence relations © of B ().

§25. CONSTRUCTION OF FREE ALGEBRAS

The following method of constructing free algebras is due to G. Birkhoff
[2].

Let K be a class of algebras. Let {©, |7 € I} be the set of all congruence
relations of P@(7) such that PR*¥(7)/0; is isomorphic to an algebra in



§25. CONSTRUCTION OF FREE ALGEBRAS 167

S(K). Form the direct product of all the B@(7)/®, and consider the sub-
algebra 9 generated by the z,, y <«, defined by

(i) = [x,]0,.
Let x denote the sequence of the z,. If p, q € P (), then p(Z) =¢(%) if and
only if p(x(7)) =q(2(¢)) for all i € I, which is equivalent to p(@)=¢q(@) for all
G={Ag, "+, 0y *Dyca @y € B, B € K. This means that ©,= @; thus,
Az PO(7)] Ok.

Theorem 1 (G. Birkhoff [2]). If the free algebra with « generators exists,
then it is isomorphic to the algebra U as constructed above.

Corollary 1. Let K be a class such that P(K)= K, S(K)< K. Then all the
free algebras over K exist.

Corollary 2. If K is an equational class, then all free algebras over K exist.

The following method of constructing free algebras (which follows from
a more general idea due to G. Grétzer [10]—see Chapter 8) leads to the
existence of algebras which resemble free algebras and are called maxi-
mally free algebras.

Definition 1. Let K be a class of algebras and let o be an ordinal. The
algebra U with the generating family x,, y <, is called a maximally free
algebra (with respect to K) if

(i) Ac K;

(i) if B € K and B is generated by y,, y < a, and if ¢ is a homomorphism
of B into A with

Yy = Zys Yy <«
then @ is an isomorphism.

Corollary. Every free algebra is maximally free.

Proof. Trivial.

Definition 2. Let K be a class of algebras and let %,, i € I, be a family of
maximally free algebras with the generating families x,}, y < «. We say that K
ts covered by this family of maximally free algebras if whenever b, € B,
y<a, B € K, then at least one of the mappings

»i:x,t —b,, Yy <@

can be extended to a homomorphism of U, into B.
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Corollary. Assume that the class K is covered by a family %, ¢ €I, of
maximally free algebras with the generating families z,!,y<a. The free
algebra Fy(«) exists if and only if for any 1, j € I, there is an isomorphism ¢
between A, and A; such that

zlp =z, y < o

This shows that to require the existence of a covering family of maxi-
mally free algebras is a natural generalization of the requirement of the
existence of free algebras.

Theorem 2. Let K be a class of algebras, closed under taking inverse
limits and under the formation of subalgebras. Then for any ordinal o, for
which there is an algebra in K of at least & elements, K has a covering family
of maximally free algebras with o generators.

Theorem 2 follows trivially from the following statement.

Lemma 1. Let the conditions of Theorem 2 hold. Let A € K be generated
by (a,| y <«). Then there exists a maximally free algebra B with a generating
family (b,|y <«), and there exists a homomorphism ¢ of B onto A such that
b,p=a, for all y <.

Proof. Let A € K be generated by « elements: a,,y<a. Set a=
gy + 5 Ay, -+ - Dycq. Let P be the family of all congruence relations ® of
PB(r) such that $(r)/O is isomorphic to an algebra in K, and O £ 0O,.

We will prove that we can apply Zorn’s Lemma to the dual of the
partially ordered set (P; <. Indeed, let

Ay,

be a chain in (P; <) and define a partial ordering on I such that j <7 if
and only if ®;2= ©;. There is a natural homomorphism ¢} of R®(7)/0,
onto P@(7)/ 0, if 125 defined by

[P] ®i i [P} ®17

where p € P“(7) (see Theorem 11.4).

Now consider the inverse system consisting of the algebras P@(7)/0,
and the homomorphisms ¢!, and let 8 denote the inverse limit, which
obviously exists. Consider the subalgebra € of B generated by the z, with
z,(1)=[x,] 0, and set

T = <x0,...,xw. . .>7<a_

Then ©; e P since ¢;® is a homomorphism of B onto R@(7)/O; and so
0, < ©,. This shows that Zorn’s Lemma can be applied to the dual of
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{P; £5, and thus we get the existence of minimal elements in {(P; <>.
Any such minimal element ® will give rise to a maximally free algebra
B@(7)/@ which can be homomorphically mapped onto 2.

§26. IDENTITIES AND FREE ALGEBRAS

Free algebras can be very neatly characterized in terms of identities.
The identities (as, for instance, commutativity and associativity) are the
simplest and most frequently used axioms in algebra. A formal definition
is the following:

Definition 1. Let p, q € P™(7). The n-ary identity p=q ¢s said to be
satisfied in a class K of algebras of type = if

P = q(O).

Remark. In other words, p=q is an identity in K if p and q induce the
same polynomials in each algebra in K, or, equivalently, p(a,, - - -, @, _,) =
q(ag, -+, a,_,) forallay,---,a, €4, A K.

Lemma 1. Let K be a class of algebras and let p, q € P™(7); assume that
Fx(n) exists. Then p=q s an identity of K if and only if p(xy, -+, 2,_1)=
q(xo, - -+, Tn_1), where the x; are the free generators of Fx(n).

Proof. This is immediate by Corollary 1 to Theorem 24.2, but the fol-
lowing is a direct proof.

Since Fx(n) € K, the condition is obviously necessary. It is also suffi-
cient because if aq,---,a,_, € A, A € K, then there exists a homomor-
phism @ of Fx(n) into A with z,p=a,, and thus

P(ag, 5 @p_1) = D(To@, - -+, Tn_19)
P(To; -+ Tn_q)p

= q(wo, -+, Tn-1)p
q(@op, -+ -, Tn_19)
Q(ao’ ) a’n—l)-

Since w-ary polynomials provide a common notational system for all
n-ary polynomials, it is convenient to consider identities of the type p=q,
where p, q € P(7). The definition of satisfiability in a class is the same
as in Definition 1. Then we have the following theorem.

Theorem 1. The identities which are satisfied in K are the same as those
satisfied in Fx(w), provided the latter exists, which in turn are the same which
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Sa’ti'sfy P(xo, cry Tyt ')=¢J(xo, crty Tyt '), where Loy = vy Xy, + o+ ATE the
free generators of Fx(w). The n-ary identities which are satisfied in K are the
same as those satisfied in Fx(n) provided the latter exists.

Let K be a class and let Id(K) denote the set of all identities satisfied in
K. Then Theorem 1 implies that Id(K) determines the structure of Fg(w),
and conversely.

Corollary 1. Let K, K' be classes of algebras and assume that Fy(w) and
T (w) exist. Then
Id(K) = Id(K')
if and only if

Trlw) = Fr(w).

Corollary 2. Let K, K' be classes of algebras and suppose that Fg(x),
S (o) exist for some a=w. Then

Id(K) = Id(K')
if and only if
Tx(e) = Fg-(e).

Corollary 2 follows from Corollary 1 using the observation that we can
use any w free generators of () in place of the free generators of Fyx(w).

If we start with a class of algebras K, we get a set of identities: Id(K).
Conversely, if we start with a set} of identities Z, we get a class of algebras
Z* satisfying these identities. We will now characterize those sets of
identities which can be represented as Id(K) and those classes of algebras
which can be represented as Z*.

Definition 2. A set of identities X is called closed provided:
(1) x;=x; 18 1 X for 1 < w;
(ii) of p=q ¢s tn Z, then so is q=p;
(iii) of p=q and q=r are in X, then so is p=r;
(iv) of py=q; 18 in Z for i =0, ..., n,—1, then so is
fr(PO’ ) Pny—l) = y(‘lo, Tt qn,-—l);

(v) if p=q is in Z and we get p’ and q' from p and q by replacing all
occurrences of x; by an arbitrary polynomial symbol r, then p’ =q’ is also in X.

Theorem 2 (G. Birkhoff [2]). A set Z of tdentities can be represented in the
form Z=1d(K) if and only if T is closed.

1 A set of identities will always be assumed to be of the same type.
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Proof. It is obvious that if ¥=1d(K), then X is closed. Conversely,
suppose that X is closed and define the relation ® on P (7) by p=q(©) if
and only if p=gq is in 2. The reflexivity of ® follows from (i) and (iv),
while (ii) and (iii) guarantee that ©® is symmetric and transitive, and (iv)
gives the substitution property. Since any endomorphism of P(7) is
uniquely determined if we are given the image r; of x; and the image of p
can be constructed by replacing the x; by r;, we infer by rule (v) that © is
fully invariant. By Theorem 24.6, R (7)/© is a free algebra; thus, by
Theorem 1, the identities p = q satisfied in it are the same as those for which

p(xo:""xm"') = q(zO;"'axm"')a

where the z; are the free generators, which by construction are the same as
the identities for which p=q(®), i.e., which are included in £. We conclude
that X =1d(K), where

K = {$©()/0}.

Remark. Theorem 2 is the “‘completeness theorem” of rules (i)-(v) of
Definition 2. For a set of identities X, let us say that £ implies the identity
p=q if whenever X is satisfied in an algebra, then so is p=q. It is obvious
that if p=q is provable from X, then ¥ implies p=gq in the above sense.
Now, Theorem 2 asserts that if £ implies p=q, then p=q is provable from
%, using the rules (i)—(v) of Definition 2. Thus (i)-(v) form “a complete
set, of rules of inference”’, because whatever follows from X can be proved
by (i)-(v).

The following result justifies the terminology ‘““‘equational class”.

Theorem 3 (G. Birkhoff [2]). A class K can be represented as K =X* for
some set of identities T if and only if K is an equational class.

Proof. Since identities are obviously preserved under the formation of
subalgebras, homomorphic images, and direct products, £* is always an
equational class.

Conversely, let K be an equational class and set X =Id(K). By Corollary
2 to Theorem 25.1, () exists for any « and for «=w the identities
satisfied by the free generators are the same as the identities in X. This
implies that if A is any algebra in £* with |4| =g, then any identity
satisfied by the generators of {(«) is satisfied by the elements of U;
hence, by Theorem 12.2, o is a homomorphic image of Fg(«). Conse-
quently, Z*< K and by definition K =X*; thus, K =2*, which was to be
proved.

Corollary 1. Let K, K' be equational classes. Then K=K’ if and only if
Id(K) = Id(K'),
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or, equivalently, if and only if
Fr(w) ¥ Fx(w).

Corollary 2. Let K, K' be equational classes. Then K < K' if and only if
Id(K)=21d(K'),

or, equivalently, if and only if Fg(w) is a homomorphic image of Fg-(w).

Definition 3. The class K is said to be generated by the algebra A if
K =HSP{2}).

Corollary 3 (4. Tarski [1]). A class K is equational if and only if it is
generated by a suitable algebra A.

Proof. If K is an equational class, we can always take

A = Fglw).
Then set

K’ = HSP({Jk(w)}).
Since Id(K')=1d(K), we get, by Corollary 1, that K=K".

All equational classes of algebras of a given type = form a lattice £(7)
under inclusion, called the lattice of equational classes. (It is, of course,
not legitimate to form a set whose elements are classes. In this instance,
however, we can get around this difficulty by defining £(7) to be the dual
of the lattice of fully invariant congruence relations of B (7).) &(7) is a
complete lattice, whose zero is the class of all one element algebras
(determined by x,=x,) and whose unit element is K(7) (defined by
Xo=X,). In the next section we will study the atoms of £(7).

The properties of free algebras can be utilized to find identities which
characterize equational classes with certain properties, which are pre-
served under homomorphisms. The following theorem illustrates this
method.

Theorem 4 (A. I. Mal'cev [3]). For an equational class K the following
two properties are equivalent:

(i) For every A € K, the congruences of A permute;
(i1) there exists a ternary polynomial symbol p such that the following two
identities hold in K:

Xo = P(Xo, X1, X;) and  x; = p(Xo, Xo, X;).
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Proof. Let us assume (i). Then in §(3) =P (7)/ Oy,
Ty = z5(O(2y, T2) - O(%0, 21)),
80

zo = [p]Ok(O(21, 25)) and [p]Ox = 5(O (%o, 7,)),

for some p € P(r). Since Fx(3)] ©(@o, 71)= Fx(3) O, 2a)= F(2), o get
that
%o = P(%o, Ty, xl) and T, = P(-’”o’ Zo, xl)
in ¥g(2); thus Lemma 1 implies (ii).
Conversely, if (ii) holds, A e K, 0,0 € C(A), a,b,c€ 4 and a=b(0),
b=c(®), then

a = p(a, b, b) = p(a, b, c)(D),
p(a” b, C) = p(b: b7 C) = C(G)’

proving that @0 =00.

This method is applied, e.g., in B. Csdkény [1]-{3], B. Joénsson [8], and
A. F. Pixley [1] (see Exercises 5.69 and 5.70).

§27. EQUATIONAL COMPLETENESS AND IDENTITIES OF FINITE
ALGEBRAS

Every set of identities is satisfied by some algebra, namely by the one-
element algebra.

Definition 1. A set of identities T is called strictly consistent if there
exists an algebra W € T* such that |A|>1.

Lemma 1. Let I denote the smallest closed set of identities that contains .
Then X is strictly consistent if and only if xo=x, ¢ Z.

Proof. This follows from the construction -used in Theorem 26.2.
Indeed, if x,=x, ¢ %, then the generators of $)(7) will not be congruent
under ® and then

BO(7)/O € Z*
and has more than one element. The converse is trivial.

If we start with a closed strictly consistent set of identities X;, then in
most cases we can add some further identities and we get Z, which is also
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closed and strictly consistent. Does this process ever terminate ? To study
this problem, let us make the following definition.

Definition 2. Let X be a strictly consistent set of identities. = s called
equationally complete if whenever TSX', where T’ is strictly consistent,
then Z=X'.

Let us note that an equationally complete set of identities be always
closed.

Definition 3. An equational class K of algebras is equationally complete
provided Id(K) ts equationally complete.

Let us note that K is equationally complete if K is an equational class
such that if K, is an equational class, K2 K, and K, contains at least one
algebra with more than one element, then K = K,. Thus K is equationally
complete if it is an atom in (7).

Definition 4. An algebra A is equationally complete if the equational
class generated by U s equationally complete.

Let us note that an equivalent definition is to require that Id() be an
equationally complete set of identities.

Example. Consider the class K of distributive lattices. Set £ =1Id(K).
We will verify that K is equationally complete. Suppose p=q ¢ Z. Assume
that contrary to our assumption,

=Zvuip=¢q

is strictly consistent. Then there exists a lattice € such that |L|#1 and
Y’ is satisfied in it. Since every lattice with more than one element has a
two-element sublattice, the two-element lattice therefore also satisfies X'.
Since every distributive lattice with more than one element is a sub-
direct product of copies of the two-element lattice, we get that every
distributive lattice with more than one element satisfies £'. Consequently,
Y’ is contained in X, contrary to our assumption. This example shows that:
(i) Z is an equationally complete set of identities; (ii) the class of distribu-
tive lattices is an equationally complete class; and (iii) any distributive
lattice with more than one element is an equationally complete algebra.

Theorem 1. Let X be a strictly consistent set of identities. Then T is
contained in an equationally complete set of identities.

Proof. Let K, K’ be equational classes. In the proof of Theorem 26.2,
we associated fully invariant congruence relations ®, ®’ on B (7) with
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Id(K), Id(K'), respectively, and by Corollary 2 to Theorem 26.3 we know
that K2 K’ if and only if @< @',

Thus, to prove Theorem 1, we have to exhibit a fully invariant congru-
ence relation @’ such that ® £ 0, ®' #., and O’ is maximal with respect
to these properties. This follows from Theorem 12.4, since ©’#. is
equivalent to x,#Zx,(0’).

Corollary 1. If K is an equational class which contains an algebra with
more than one element, then K contains an equationally complete class.

Corollary 2. Equationally complete classes correspond in a 1-1 manner to
mazximal fully invariant congruence relations of P(7) which separate the
generators.

Let us assume that o(r) <X,. Then there are X, w-ary polynomials and
X, identities. Therefore, there are ¢=2%o sets of identities. How many of

these can be equationally complete? This question is answered in the
following theorem.

Theorem 2 (J. Kalicki [2]). Let r=<2). Then there are ¢ equationally
complete sets of identities.

Proof. We will consider algebras of type (2> and the operation will be
denoted by +. For simplicity’s sake, we will write 2z for z+2 and 2"
for 2(2"~z). Let I be the set of positive integers. Fix two subsets N, M < I.
We define a set of identities X (M, N) as follows:

(1) 2xo+xo=2x; +X,;
(i1) 2™xo+Xo=2xo+x, if m e M
(ili) 2™xq+xq=x, if n € N.

Let us say that M and N are complementary if M U N=1—{1} and
MNN=g.

Lemma 2. If M and N are complementary, then X (M, N) is strictly
consistent.

Proof. We exhibit an algebra with more than one element which
satisfies X(M, N). Let A={a,, a,, - - -}. Define + on A as follows:

i1 +a=0ay;
Aymta=a,if me M,
@, nta,=a;,if neN;
a4+ 0;=0a;,,;
at+a;=a;+a;.
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Observe that a,+a;=a,,, implies that 2™a,=a,,, ,. (Proof is by induc-
tion on m.)

Compute: 2a;+a;=a,.;+a,=a,. This verifies axiom (i).

Further, for me M, 2"a,+a;,=a;, ,+a,=0,=0;,,+a;=2a,+a;. This
verifies axiom (ii).

Finally, for n e N, 2", +a,=a;,,+a;=a,, which verifies axiom (iii).
This completes the proof of Lemma 2.

Lemma 3. Let M, N and M', N’ be complementary and suppose M # M'.
Then X(M, N) U X(M', N') is not strictly conststent.

Proof. By assumption, there exists an m, in M such that my, ¢ M’ (or
the other way around); then m, € M and m, € N'. Therefore 2™ox,+x,=
2x0+x, and 2Mox, + X, =x,; hence 2x,+ xo=x,.

Similarly, 2x, +x; =x,. Then, by axiom (i), x,=x;, which means that
the set is not strictly consistent.

Proof of Theorem 2. There are ¢ complementary sets; hence, there are
¢ strictly consistent X (M, N). By Theorem 1, each can be extended to an
equationally complete set, and, by Lemma 3, no two such extensions can
coincide. This concludes the proof of the theorem.

Lemma 4 (A. Tarski [1]). If K is an equationally complete class and
Ae K, |A|>1, then A is an equationally complete algebra.

Proof. Consider the equational class generated by . It is contained in
K; theref